

Achieving the Landscape Vision

National Science Panel Meeting June 13, 2005

Bird use?

Existing Education Center
 Managed Pond
 Tidal Marsh
 Beach
 Marsh with Pannes/Salinas
 Upland transition
 Subtidal structure for surfperch/oyster
 Mudflat

mercury?

Charette Vision #2 for 2050

- Existing Education Center Managed Pond Tidal Marsh Beach Marsh with Pannes/Salinas Upland transition Subtidal structure for surfperch/oyster Mudflat
 - Leveés

Important Uncertainties

- Mercury
- Sediment Dynamics/Mudflats
- Bird Use of Different Habitats, esp. tidal marsh ponds/pannes
- Non-avian benefits
- Socio-economic dynamics
- Very large scale issues

Topics

- Landscape Scale Assessment
- How the Landscape Scale Assessment is used in alternatives evaluation
- How the charette results are being used in development of the Adaptive Management Plan

What does the Landscape Assessment tell us?

- Habitat Assessment
 - Habitat evolution
 - No Action and With Project alternatives
- Bird Use Assessment
 - How do birds respond to habitat changes?
- Collaborative: PWA, USGS, HTH, PRBO

Landscape Assessment as a tool

- Not "The" Answer
- Help us understand the limits of the system
- Provides regional characterizations, not detailed spatial resolution
- Based on assumptions about the alternatives that will be detailed later in planning
- Assumes all tidal ponds are breached on Day 1

Export/Import to North

sedimentation/ erosion sedimenta

Tribufary Input-

Sediment Budget: Imports – exports = change in storage (Bay and pond sedimentation/erosion)

Ba

Long-term simulation of hydraulics/sediment dynamics (Uncles-Peterson Model)

Schoellhamer and Lionberger, 2003

Outputs from the Uncles-Peterson Model

- Suspended sediment concentrations (by region)
- Volume of sediments accreted in the ponds (by group of ponds)
- Net deposition/erosion in the upper and lower layers in the South Bay

Marsh sedimentation in the ponds

Mudflat

Evolution

Long-term simulation of marsh sedimentation (MARSH98)

- Initial bed elevation
- Tides
- Suspended Sediment Concentration
- Sea Level Rise
- Density of Deposited Material
- Wind-wave resuspension / hindered settling

Long-term simulation of marsh sedimentation (MARSH98)

Suspended sediment concentration Index from Uncles-Peterson model

Index scaled based on empirical data from existing restoration sites

Bay Mudflat Evolution

Initial conditions

- Mudflats: 2004 LiDAR
- Shallow and deep subtidal: 1983 bathymetry

Evolution

- By region based on erosion / deposition from the sediment budget
- By sub-region based on observed rates of change between 1983 and 2004

Alviso Complex Alternative 3

Preliminary

Eden Landing Complex Alternative 3

Preliminary

Ravenswood Complex Preliminary Alternative 3

Export north to Bay 1830 1820

Bay erosion 1580 1990

> Pond sedimentation 20 500/

Note: Values in 1,000 metric tons. Includes area South of San Mateo Bridge.

290

Trioutary loput

No Action

No Action Alternative 3

> Import through Dumbarton Narrows

80 250 Bay sedimentation 150 60

Preliminary

sedimentation 20 320

ributary ine

200

Pond

Note: Values in 1,000 metric tons. Includes area south of Dumbarton Bridge.

Mudflat Evolution in the far South

sting Condition

Bay

- Tidal Datum
- Above MHHW
- MHW to MHHW
- 💻 MTL + 0.3m to MHW

Preliminary

No Action

Year 50

- MTL to MTL + 0.3m
- MLLW to MTL
- MLLW 3m to MLLW

MLLW - 3m and Below

Preliminary

Habitat Changes South of San Mateo Bridge, Yrs 0 to 50

	No A	ction	Alternative 3		
	Acres	%	Acres	%	
Deep subtidal	0	0%	100	3%	
Shallow subtidal	800	6%	2,200	17%	
Intertidal mudflat	-1,600	-16%	-2,300*	-18%	
Tidal marsh	900	NA	11,400*	NA	
Managed pond	0	0%	-11,200	-88%	

* Approximately 1,400 acres of tidal channels will be created in the ponds (included in tidal marsh acreage). Much of this will be mudflat.

What does this mean for sediments?*

- Sediment availability does not appear to limit tidal marsh restoration in the ponds
 - South of the Dumbarton is an efficient sediment trap
- Sediment availability does appear to have an effect on bay mudflats
 - Some loss of Bay mudflat over 50 years with No Action
 - Somewhat greater loss over 50 years with Alternative 3
- Loss of Bay mudflat partially offset by creation of channel-associated mudflat inside the ponds
 - * Based on preliminary results

Habitat and Bird Use predictions

- Tidal and managed pond habitat detail
- Input to bird use modeling
 For use in alternatives evaluation

Tidal Habitat Types

- High and low marsh
- Saline and brackish marsh
- Mudflat
- Channels
- Ponds/pans
- Upland transitions

Vegetation Zones

Approximate Elevation and Water Column Salinity Range of Dominant Plant Species in Tidal Marsh Habitats along Coyote Creek and Mud Slough (South Bay).

* Shows means of elevation limits. Elevation ranges of plant species may vary with salinity.

** Salinity data modeled (Gross, 2003). Elevation and habitat data are empirical.

Managed Pond Habitat Types

- System (enhanced)
- System (winter) / High-salinity (summer)
- System (winter) / Seasonal (summer)
- Seasonal ponds
- Seasonal (summer) / High salinity
- High salinity
- Reconfigured (graded) ponds

Foraging Depth Varies by Species

Reconfigured Ponds

Reconfigured ponds will be extensively graded, and will be managed to achieve highly productive habitat for foraging, roosting, and breeding waterbirds.

Summary of Reconfigured Pond Management Alternatives 1-3 (preliminary)

Pond Configuration / Management	Target Species	Acres
Furrowed (extensive, very shallow water with narrow raised furrows and	Nesting by Snowy Plovers, Black- necked Stilts, and American Avocets:	230
small irregular islands)	foraging by other shorebirds	
High Salinity (mostly shallow, with 30% nesting islands)	Nesting by Snowy Plovers, Black- necked Stilts, and American Avocets; foraging by other shorebirds (including phalaropes)	450
Low Salinity (mostly shallow, with 30% nesting islands)	Nesting by Snowy Plovers, Black- necked Stilts, and American Avocets; foraging by other shorebirds and dabbling ducks	610
Deep Water (with 5% nesting islands)	Nesting by terns, foraging by diving ducks and piscivores	290
TOTAL		1,600

Subset of Habitat Attributes in Managed Ponds by Alternative (in acres)

	Restoration Alternative			
	No	1	2	3
	Action			
<15 cm water (shorebirds), summer	1300	1100	840	810
<15 cm water (shorebirds), winter	2000	1500	910	810
>1 m water (diving ducks), summer	1300	1000	470	150
>1 m water (diving ducks), winter	1700	1300	630	250
Nesting/roosting islands	30*	390	390	390

* Value given is for Year 0; presumed to be near zero at Year 50.

Use of the Landscape Scale Assessment in Alternatives Evaluation

BIOHABITAT

Objective 1: Create, restore, or enhance habitats of sufficient size, function, and appropriate structure to:

1A. Promote restoration of native special-status plants and animals that depend on South San Francisco Bay habitat for all or part of their life cycles

Evaluation Criteria	Metrics
Recover the south bay subspecies of the salt marsh harvest mouse	Area of complete salt marshes, with broad marshplain (<i>i.e.</i> , pickleweed) habitat and broad upland/peripheral halophyte transitional zones, and interconnected restored marsh areas
Meet the South Bay portions of the recovery plan for the California Clapper Rail	Area of broad tidal marshes with extensive, dendritic channel systems and appropriate vegetation structure
Re-establish populations of <i>Cordylanthus maritimus</i> ssp. <i>palustris</i> and <i>Sueda californica</i>	Area of high marsh/upland transitional zones
Meet recovery goals for Snowy Plovers	Area of suitable breeding habitat

Quantifiable Metrics

Preliminary

	No			
Biological Habitat	Action	Alt 1	Alt 2	Alt 3
Deep subtidal (acres)	3,800	3,900	3,900	3,900
Shallow subtidal (acres)	13,800	15,100	15,200	15,200
Intertidal mudflat (acres)	11,200	10,600	10,500	10,500
Length of marsh channels (miles)		340	460	550
Salt marsh (acres)	490	4,900	7,500	8,100
Brackish marsh (acres)		5	200	200
Area of upland transitional habitat (acres)		62	160	190
Managed pond area (acres – total)	13,000	6,100	3,300	1,600
System (enhanced)	7,700	2,000	750	0
System (winter) / High Salinity (summer)	360	0	0	0
System (winter) / Seasonal (summer)	1,500	750	310	0
Seasonal Ponds	1,600	860	170	0
Seasonal (summer)/High Salinity (winter)	790	410	0	0
High Salinity Ponds	830	520	520	0
Reconfigured Ponds	0	1,600	1,600	1,600

PRBO presentation

Back-up

Export/Import to North

> Bay sediment erosion

> > Tributary loput

Sediment Budget Imports – exports = change in storage (Bay and pond sedimentation/erosion)

Alternative Ratings and Rationale

Biological Habitat

		Response to Criteria			а		
Criteria Number	Evaluation Criteria	No Action	Alt 1	Alt 2	Alt 3	Rationale	
1A-1	Harvest Mouse	2	4	6	8	large connected salt marsh, upland escape cover	
1A-2	Clapper Rail	1	5	7	8	large contiguous salt marsh areas, dendritic channels	
1A-3	S-S Plants	1	4	5	8	upland ecotone, beach habitat	
1A-4	W. Snowy Plover	5	7	6	5	new breeding habitat (islands, pans and levees)	
1A-5	Salmon/Steelhead	1	5	7	9	tidal restoration along major sloughs with existing or potential spawning	
1B-1	Breeding Birds	4	7	6	5	new breeding habitat (islands, pans and levees)	
1B-2	High Salinity Birds	5	4	3	2	high salinity ponds (including some marsh ponds)	
1B-3	Foraging Shorebirds	5	4	3	3	mudflat, pans and ponds within marshes, and managed pond areas	
1C-1, 1C-3	Mudflat Shorebirds, Invertebrates	6	6	6	6	area of intertidal mudflat	
1C-2	Bay Fish	2	6	7	8	tidal restoration in ponds, extent of bay mudflats	
1C-4A	Diving Ducks	5	4	3	2	open water 3 feet deep or deeper	
1C-4B	Dabbling Ducks	5	6	8	9	edge habitat between vegetated marsh and mudflat/open water	
1C-5	Harbor Seal	1	5	7	9	new large sloughs adjacent to marsh	

Overall Valuation for No Action Alternative

