Sediment flux in the southern reach of San Francisco Bay: Implications for habitat restoration

Gregory Shellenbarger Scott Wright David Schoellhamer

USGS, CA Water Science Center, Sacramento

Background

 San Francisco Bay (SFB) has lost >85% of historic tidal marsh - Bay margins diked for agriculture and salt production South Bay Salt Pond **Restoration Project** – Over 6,000 hectares of former salt evaporation ponds Planned for mix of tidal wetlands and managed ponds Several of the ponds are severely subsided

Motivation

 South Bay Salt Pond Restoration Project -32 million m³ sediment needed to fill subsided ponds to MTL Direction of sediment flux unknown for far south SFB -Jaffe et al. suggest it is generally to the south in this reach Sediment seasonality and sources to far south SFB -Winter (wet season) input Two local tributaries (important on decadal-scale) Sacramento & San Joaquin Rivers (importance unknown) -Summer (windy) redistribution Extensive mudflats

Study Design

- •Flux: Dumbarton Bridge (15-min. interval)
 - ADCP for index velocity, stage, and backscatter
 - Two turbidity probes: 4' and 25' above bottom
 - Barometer

- •Flux: Boat-based discharge and EDI sediment sampling for calibration (monthly)
- •Input: Sediment measured on 2 major tributaries (daily)
- •Processes: Adjacent mudflat (15-min. interval)
 - -High-accuracy pressure transducer for waves
 - CTD + turbidity

Equal Discharge Increment (EDI) Sampling

Flow centroids determined for channel cross-section
Depth-integrated sediment samples collected from center of each centroid

Study Area

Results - Calibration

Discharge (bridge vs. boat): y = 0.983 X - 26.7 r²=0.984
Suspended-sediment concentration (SSC, from EDI):

Results – Continuous Discharge

Positive is ebb tide direction

Results – Continuous SSC

₽

Results – Cumulative Sediment Flux

•Negative is flood direction (into far south SFB)

₽

Results – Time for Restoration

Suspended-sediment flux

 Tributary input: 20,000 m³/yr
 Past Dumbarton: -617,000 m³/yr

Approximate time to fill subsided volume (32 Mm³)
 —Tributaries input: 1,600 yrs
 —Past Dumbarton: 50 yrs

Results - Processes

Spring-neap tidal signal (higher shear during spring tides)
Seasonal signal (strong diurnal summer winds)

Results - Processes

•Sustained winds appear to be important for increased SSC

Ē

Results

SSC derived from optical probes and acoustic backscatter diverges in the spring

Future Work

•Further explore physical processes on suspended sediment flux using existing data (e.g., wind and waves)

- Analyze LISST data from the spring to better understand how different particles sizes change optical vs. acoustic signals
- Analyze SCUFA data to understand if the spring increase in turbidity is related to the spring phytoplankton bloom
- •Maintain flux station to quantify and understand yearly differences in flux

Acknowledgements

- Paul Buchanan, Amber Forest, and Tara Morgan
- Funding:
 - The San Francisco Bay Pilot Study for the National Water Quality Monitoring Network for U.S. Coastal Waters and their Tributaries
 - USGS Science Support for Salt Pond Restoration

