

Spin Cycle

Decoding population dynamics of phalaropes and other waterbirds of the Pacific Flyway Dr. Nathan D. Van Schmidt

Contributors to this research

And many more!

A satellite map of California ...in 1851

A satellite map of California ...in 2002

The Transformation of the San Francisco Estuary

Condition of marsh

Mostly pristine since date of creation

Mostly leveed or filled by people during the indicated period of time:

1860-1970

1940–1970

1900-1940

1860-1900

Ridgway's Rail

California Black Rail

Salt Marsh Harvest Mouse

(dubiously ornithological)

FORTRESSES OF MUD

Rising seas threaten the San Francisco Bay Area, home to one of the largest estuaries in North America. But marsh-restoration efforts could hold back the high water.

in marsh restoration, moving into high gear after a groundbreaking plan published in 1998. In recent years, local leaders have tackled these efforts with a new-found sense of urgency. Sea

A view of a wetlands restoration project in Menlo Park, California.

levels here could rise by as much as 2.1 metres by 2100, the California Natural Resources Agency estimates, and that would threaten electricity plants, transportation infrastructure and drinking-water facilities in the region — many of which lie low and close to the bay.

The South Bay Salt Pond Restoration Project

So far, most ponds have not yet been restored to tidal wetlands, but transitioned out of salt production into less salty "managed wildlife ponds"

Eventually, 50-90% of ponds will be breached to restore ponds to historical tidal marsh ecosystem

 \rightarrow sediment is deposited \rightarrow vegetation regrows \rightarrow less habitat for some waterbirds

The Pacific Flyway

Each year, over 1 million waterbirds use San Francisco Bay as migratory or winter habitat – many in the salt ponds

Nature Conservancy

Diving Ducks

SOUTH BAY SALT POND RESTORATION PROJECT

Waterbird Triggers:

2+ years of population X% below baseline

SOUTH BAY SALT POND RESTORATION PROJECT

Re	Species/Guild	Season	2005-2007 Baseline	AMP Threshold	NEPA/CEQA Threshold ^B	
1	Diving ducks	Winter	39,645	-1%	-20%	
	Ruddy Ducks	Winter	12,602	-1%	-15%	
	Small shorebirds	Fall	60,623	-1%	-20%	
		Spring	73,728	-1%	-20%	
	Least Terns	Summer	63	-1%	-1%	
	Eared Grebes	Winter	5,640	-25% ^A	-50%	
	Phalaropes	Summer	3,225	-25% ^A	-50%	
	Bonaparte's Gulls	Winter	1,270	-25% ^A	-50%	

^A Or <50% below the baseline in a single year ^B Only if the decline is caused by Project actions

Waterbird Surveys

Count all waterbirds on each pond 2-3 times each season since 2003

Conducted year-round (summer surveys are now exclusively for target species)

Analysis is focused on each guild's "main" season(s)

Long-term trends for 9 species/guilds

Pond area - All - Salt ponds - SBSPRP

Phalarope counts declined >50% from 2005-2007 baselines as early as 2010, exceeding both AMP and NEPA/CEQA thresholds

Black = total counts Blue = restoration project Green = active salt ponds

Wilson's Phalarope (*Phalaropus tricolor*)

Red-necked Phalarope (*Phalaropus lobatus*)

Phalaropes Foraging

Presumed Phalarope Prey

Brine Flies (*Ephydra* spp.) Brine Shrimp (*Artemia* spp.)

Wilson's Phalarope

Saline lake specialist during migration and in winter habitats

→ connects saline lakes in a hemispheric network

Red-necked Phalarope (*Phalaropus lobatus*)

Uses saline lakes and coastal habitats during migration; over-winters in coastal waters

Phalarope counts declined >50% from 2005-2007 baselines as early as 2010, exceeding both AMP and NEPA/CEQA thresholds

Big question:

Was the decline caused by Restoration Project management actions?

Past studies of habitat use

- Modeled abundance as a function of pond habitat characteristics
- Excelled at identifying what makes a pond good or bad habitat
- But didn't directly test what drives *declines* or *increases* over time

Scullen et al. 2013

De La Cruz et al. 2018

Science for a changing world
Trends and Habitat Associations of Waterbirds Using the South Bay Salt Pond Restoration Project, San Francisco Bay, California
Open-File Report 2018–1040
U.S. Department of the Interior U.S. Geological Survey

Remaining salt ponds

SBSPRP ponds (mostly)

Regression model: change in site-specific counts from year to year based on *changes* in habitat conditions

Change = Year₂ - Year₁ Change ~ β 0 + β 1* Salinity + β 2 * Δ Salinity + ...

Regression model: percent change in site-specific counts from year to year based on *changes* in habitat conditions

PctChange = $Ln((Year_2 - Year_1) / (Year_1 + 1))$ PctChange ~ $\beta 0 + \beta 1^*$ Salinity + $\beta 2^* \Delta Salinity + ...$

Variables Assessed

Class	Name	Description	Change model	
Pond characteristics Area_km2		Pond area	Static	
	Islands_num	Number of islands	Static	
	OpenPublic_pct	Maximum % of levees open to public across all years	Static	
	OpenHunting_pct	Maximum % of levees open for hunting across all years	Static	
	BayDist_km	Distance to San Francisco Bay	Static	
	CreekDist_km	Distance to creek/slough	Static	
	LandfillDist_km	Distance to Tri-cities Landfill	Static	
Hydrology	Breached	Breached to restore tidal wetland	Annual	
	WaterElev_m	Mean water depth	Change	
Water quality	Salinity	Mean salinity	Annual + Change	
	рН	Mean pH	Annual + Change	
	LDO_mgL	Mean dissolved oxygen	Annual + Change	
	Temp_C	Mean water temperature	Annual + Change	
Climate	РРТО	Cumulative annual precipitation – year-to-date	Annual	
	PPT1	Cumulative annual precipitation – last year's only	Annual	
	РРТЗ	Cumulative annual precipitation – last three years	Annual	
	ТМХ	Mean daily maximum temperature for the season	Annual	
	TMN	Mean daily minimum temperature for the season	Annual	

Drivers of change in phalarope counts (2003-2018) Δ Water Depth Δ Salinity Huh? Salinity Precipitation (year-to-date) (Intercept) -1.30 -0.65 0.00 0.65 1.30 Effect size of standardized covariate **Relationship:** or **I**

Salinity Ranges for Phalarope Prey Items

Lower	Upper	Name	Notes
0	2	Near-fresh	Freshwater up to the range of irrigation water
2	30	Brackish	Typical range observed in estuarine systems
30	50	Marine	Lower optimal limit for <i>Ephydra</i> and <i>Artemsia</i> ; 42 ppt is the upper limit for <i>E. millbrae</i>
50	80	Low hypersaline	Upper optimal limit for <i>Ephydra</i> and <i>Artemsia</i>
80	150	Mid hypersaline	Fish generally absent; high range may be upper limit for <i>Ephydra</i> and <i>Lipochaeta slossonae</i>
150	+	High hypersaline	Increasingly only Artemia survive, which reach tolerances by 200 ppt

Adapted Takekawa et al. 2006 (adjusted with other sources)

Phalarope abundance is highest at marine to moderately hypersaline (30 – 150 ppt)

Extremely hypersaline ponds (>150 ppt) avoided

Foraging Observations

Recorded

of attempts (pecks)
of success (beak opens)

Rubega & Obst 1993

Foraging attempts by site

Foraging successes by site

Success ratio by site

That might explain this... but then what about this?

SFB Wilson's Phalarope count in 1986 = 40,000 birds (Jehl 1988)

Because there were no scientific surveys of phalaropes in SF Bay from 1986-2003, we looked at eBird data to see if the decline predated the Restoration Project

eBird phalarope data (SFB)

- Lots of variability in counts from year to year, but repeated high counts up to late 1990s
- Linear scale shows some very high counts in 1970s-1980s
- Log scale shows consistent decline

eBird Model with trendline (linear scale)

Annual trendline indicates steepest decline occurred prior to 2000 – before the start of the Restoration Project

Saline Lakes: in Danger of Collapse Worldwide

A Canary in the Salt Pond?

BEFORE THE SECRETARY OF THE INTERIOR

PETITION TO THE U.S. FISH AND WILDLIFE SERVICE TO LIST WILSON'S PHALAROPE (PHALAROPUS TRICOLOR) UNDER THE ENDANGERED SPECIES ACT AS A THREATENED SPECIES AND TO CONCURRENTLY DESIGNATE CRITICAL HABITAT

CENTER FOR BIOLOGICAL DIVERSITY RYAN CARLE TERRY TEMPEST WILLIAMS BENJAMIN W. ABBOTT, PH.D. RON LARSON, PH.D. NATHAN D. VAN SCHMIDT, PH.D. UTAH PHYSICIANS FOR A HEALTHY ENVIRONMENT UTAH YOUTH ENVIRONMENTAL SOLUTIONS MONO LAKE COMMITTEE KYRIANA TARR

March 28, 2024

Diving Ducks

Herons & Egrets

Bonaparte's Gull

Eared Grebe

but almost extirpated from SBSPRP area

Snowy Plover Habitat

Year-round

Winter

Rangewide

San Francisco Bay

- Dune-backed sandy beaches
- River bars
- Salt panne

- Salt panne in salt ponds
- Levees
- Dredge material

Herons & Egrets

Fisheaters

Dabbling Ducks

Diving Ducks

Duck Population Trends Track Drought

Ducks Unlimited (2025)

Medium Shorebirds

Small Shorebirds

Pond area - All - Salt ponds - SBSPRP

Population trends and movement respond synchronously to drought (Barbaree et al. 2020)

Pacific Flyway routes in California

Sources: U.S. Fish and Wildlife Service; Nature Conservancy

Summary of Threshold Status

Species/Guild	Season	2005-2007 Baseline	AMP Threshold	NEPA/CEQA Threshold ^B	% Change	Years Below	Decline Trigger
Diving ducks	Winter	39,645	-1%	-20%	+35%	1	FALSE
Ruddy Ducks	Winter	12,602	-1%	-15%	+136%	0	FALSE
Small shorebirds	Fall	60,623	-1%	-20%	+44%	1	PRIOR
	Spring	73,728	-1%	-20%	+4%	2	TRUE
Least Terns	Summer	63	-1%	-1%	+21%	1	PRIOR
Eared Grebes	Winter	5,640	-25% ^A	-50%	+35%	0	FALSE
Phalaropes	Summer	3,225	-25% ^A	-50%	-78%	3	TRUE
Bonaparte's Gulls	Winter	1,270	-25% ^A	-50%	-53%	3	TRUE
Dabbling ducks	Winter	48,524			-17%	3	TRUE
Medium shorebirds	Winter	23,312			-6%	2	TRUE

NATIONAL GEOGRAPHIC

San Francisco's Financial District sits atop what was once Yerba Buena Cove. After the Gold Rush of 1849 the harbor was choked with abandoned ships that had carried people from around the world to the city. Rapid development followed, and the shallow cove was filled in and built up. An estimated 70 ships are buried under these skyscrapers.

How the Bay Area Is Restoring Nature's Delicate Balance

As rising seas and demands for fresh water threaten San Franciscoarea shorelines, the focus is on building tidal marsh.

Beyond the "Balance of Nature"

Funders

California Wildlife *Foundation*

Thank you!