South Bay Suspended-Sediment Concentrations and Supply

David Schoellhamer
Greg Shellenbarger
Maureen Downing-Kunz

USGS California Water Science Center, Sacramento

Sediment Supply

YSI Turbidity Probe
with wiper **≥USGS**

Acknowledgements

- Paul Buchanan, Mike Farber, Amber Forest, Larry Freeman, Jeff Gartner, Tara Morgan-King, Emily Novick, Amber Powell, David Senn, Chris Silva, Travis von Dessoneck, Kurt Weidich, Brooks Weisser, Daniel Whealdon-Haught, Rob Wilson, and Scott Wright
- US Army Corps of Engineers
- San Francisco Bay Regional Monitoring Program
- California Coastal Conservancy
- San Francisco Estuary Institute
- US Geological Survey Priority Ecosystem Science Program, Office of Water Quality, and San Francisco Bay Pilot Study for the National Water Quality Monitoring Network for U.S. Coastal Waters and their Tributaries
- Santa Clara Valley Water District
- City of San Jose Environmental Services Department

Comparison of Sediment Fluxes

Positive values are seaward

Springtime flushing of South Bay

Surface and bottom currents

Salinity gradient

Dry spring 2009

Wet spring 2011

Springtime: wind and suspended sediment

Springtime: wind and suspended sediment and phytoplankton bloom

Flux - Flow Relationship (WY09-WY11)

Positive values are seaward

Newer data: Dumbarton suspended-sediment concentration doubled 2013 & 2014

Until mid-2012 north of the Dumbarton Bridge was 'more of a shell hash station, now it is more of a stinky dark mud' -Jeff Crauder, USGS Menlo Park

512 water samples at 5 SF Bay stations water years 2010-2015

Biggest increase in suspended-sediment concentration at Dumbarton Bridge

259 cruises water years 2000-2014 USGS Menlo Park

http://sfbay.wr.usgs.gov/access/wqdata/index.html

Increased suspended sediment in South Bay

http://sfbay.wr.usgs.gov/access/wqdata/index.html

San Mateo Bridge salinity: spring freshets, drought

Conclusion

We hypothesize that the recent increase in South Bay suspended sediment may be due to the ongoing drought in California.

During a drought, net landward sediment transport in lower South Bay likely persists throughout the year and erodible sediment accumulates.

McCulloch et al. 1970

Acknowledgements

- Paul Buchanan, Jeff Crauder, Mike Farber, Amber Forest, Larry Freeman, Jeff Gartner, Bruce Jaffe, Tara Morgan-King, Emily Novick, Amber Powell, David Senn, Chris Silva, Jan Thompson, Laura Valoppi, Travis von Dessoneck, Kurt Weidich, Brooks Weisser, Daniel Whealdon-Haught, Rob Wilson, and Scott Wright
- US Army Corps of Engineers
- San Francisco Bay Regional Monitoring Program
- California Coastal Conservancy
- San Francisco Estuary Institute
- US Geological Survey Priority Ecosystem Science Program, Office of Water Quality, and San Francisco Bay Pilot Study for the National Water Quality Monitoring Network for U.S. Coastal Waters and their Tributaries
- Santa Clara Valley Water District
- City of San Jose Environmental Services Department

