HYDRODYNAMIC MODELING REPORT
South Bay Salt Pond Restoration Project

Hydrodynamic Modeling Report: Alternatives Analyses

Submitted to:
California State Coastal Conservancy
U.S. Fish & Wildlife Service
California Department of Fish and Game

Prepared by:
PWA (Philip Williams & Associates, Ltd.)

October 2006
TABLE OF CONTENTS

INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Modeling Objectives</td>
<td>2-1</td>
</tr>
<tr>
<td>1.2 Restoration Alternatives</td>
<td>2-1</td>
</tr>
<tr>
<td>1.3 NEPA/CEQA Baseline</td>
<td>2-2</td>
</tr>
<tr>
<td>1.4 Report Organization</td>
<td>2-3</td>
</tr>
</tbody>
</table>

2. MODELING CONTEXT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Model Development</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Programmatic Modeling Simulations</td>
<td>2-2</td>
</tr>
<tr>
<td>2.3 Major Assumptions and Uncertainties</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3.1 Phasing</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.2 Level of Detail</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.3 Managed Pond Discharges</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.4 Sediment Transport and Geomorphic Modeling</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.5 Grid Resolution</td>
<td>2-5</td>
</tr>
<tr>
<td>2.3.6 Two-dimensional Model Approach</td>
<td>2-6</td>
</tr>
<tr>
<td>2.3.7 Long-term Bathymetric Change</td>
<td>2-6</td>
</tr>
</tbody>
</table>

3. RESTORATION SCENARIO MODEL SET-UP

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Baseline Conditions</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.1 Island Ponds</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.2 Eden Landing Ecological Reserve</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1.3 Boundary and Initial Conditions</td>
<td>3-2</td>
</tr>
<tr>
<td>3.1.4 Potential Tidal Prism</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2 Alternative C – Tidal Habitat Emphasis, Year 0</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.1 Breach Sizes and Locations</td>
<td>3-6</td>
</tr>
<tr>
<td>3.2.2 Boundary and Initial Conditions</td>
<td>3-7</td>
</tr>
<tr>
<td>3.2.3 Potential Tidal Prism</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3 Alternative A – No Action, Year 50</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3.1 Ponds</td>
<td>3-10</td>
</tr>
<tr>
<td>3.3.2 Tidal Sloughs</td>
<td>3-10</td>
</tr>
<tr>
<td>3.3.3 South Bay Bathymetry</td>
<td>3-13</td>
</tr>
<tr>
<td>3.3.4 Boundary and Initial Conditions</td>
<td>3-14</td>
</tr>
<tr>
<td>3.4 Alternative C – Tidal Habitat Emphasis, Year 50</td>
<td>3-14</td>
</tr>
<tr>
<td>3.4.1 Ponds</td>
<td>3-15</td>
</tr>
<tr>
<td>3.4.2 Tidal Sloughs</td>
<td>3-15</td>
</tr>
<tr>
<td>3.4.3 South Bay Bathymetry</td>
<td>3-16</td>
</tr>
<tr>
<td>3.4.4 Boundary and Initial Conditions</td>
<td>3-17</td>
</tr>
</tbody>
</table>

4. ALTERNATIVE C, YEAR 0, SUMMER CONDITIONS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
</tr>
</tbody>
</table>
4.1 Water Levels ... 4-1
 4.1.1 South Bay 4-1
 4.1.2 Tidal Sloughs 4-3
 4.1.3 Ponds 4-5
4.2 Tidal Prism ... 4-6
4.3 Salinity ... 4-10
 4.3.1 South Bay 4-10
 4.3.2 Tidal Sloughs 4-11
4.4 Circulation .. 4-13
 4.4.1 Current Velocity 4-14
 4.4.2 Residual Circulation 4-16
4.5 Bed Shear Stress .. 4-17
 4.5.1 South Bay 4-18
 4.5.2 Tidal Sloughs 4-19

5. ALTERNATIVE C, YEAR 0, WINTER CONDITIONS 5-1
5.1 Water Levels ... 5-1
 5.1.1 South Bay 5-1
 5.1.2 Tidal Sloughs 5-3
 5.1.3 Ponds 5-5
5.2 Tidal Prism .. 5-7
5.3 Salinity ... 5-9
 5.3.1 South Bay 5-10
 5.3.2 Tidal Sloughs 5-10
5.4 Circulation .. 5-13
 5.4.1 Current Velocity 5-14
 5.4.2 Residual Circulation 5-16
5.5 Bed Shear Stress .. 5-17
 5.5.1 South Bay 5-17
 5.5.2 Tidal Sloughs 5-18

6. ALTERNATIVE A, YEAR 50, SUMMER CONDITIONS 6-1
6.1 Water Levels ... 6-1
 6.1.1 South Bay 6-1
 6.1.2 Tidal Sloughs 6-2
6.2 Tidal Prism .. 6-4
6.3 Salinity ... 6-7
 6.3.1 South Bay 6-7
 6.3.2 Tidal Sloughs 6-8
6.4 Circulation .. 6-10
 6.4.1 Current Velocity 6-11
 6.4.2 Residual Circulation 6-12
6.5 Bed Shear Stress .. 6-13
7. ALTERNATIVE C, YEAR 50, SUMMER CONDITIONS 7-1

7.1 Water Levels ...7-1
 7.1.1 South Bay 7-1
 7.1.2 Tidal Sloughs 7-3

7.2 Tidal Prism ...7-5

7.3 Salinity ..7-8
 7.3.1 South Bay 7-8
 7.3.2 Tidal Sloughs 7-9

7.4 Circulation ..7-11
 7.4.1 Current Velocity 7-12
 7.4.2 Residual Circulation 7-14

7.5 Bed Shear Stress ...7-15
 7.5.1 South Bay 7-15
 7.5.2 Tidal Sloughs 7-15

8. REFERENCES 8-1

9. LIST OF PREPARERS 9-1

10. APPENDIX A – MODEL CALIBRATION SUMMARY 10-1
 10.1 GSFB Model Calibration and Validation Summary ...10-1
 10.2 South Bay Model Calibration and Validation Summary ..10-2

TABLES

Table 2-1. Hydrodynamic Model Runs
Table 3-1. Input and Boundary Condition Data Sources
Table 3-2. Potential Tidal Prism of ISP Project Areas
Table 3-3. Potential Tidal Prism of SBSP Alternative C Project Areas
Table 3-4. Long-term Increase in Tidal Prism, Alternative A
Table 3-5. Long-term Increase in Channel Depth, Alternative A
Table 3-6. Long-term Increase in Tidal Prism, Alternative C
Table 3-7. Long-term Increase in Channel Depth, Alternative C
Table 4-1. South Bay Tidal Water Surface Elevation and Phase Differences under Alt C, Year 0, Summer
Table 4-2. Tidal Slough Water Surface Elevation and Phase Differences under Alt C, Year 0, Summer
Table 4-3. Comparison of Previous Estimates of Tidal Prism with DELFT3D Baseline Estimates
Table 4-4. Comparison of Tidal Prism between Baseline and Alternative C, year 0, Summer
Table 4-5. South Bay Salinity Differences under Alt C, Year 0, Summer
Table 4-6. Tidal Slough Salinity Differences under Alt C, Year 0, Summer
Table 4-7. South Bay Peak Velocity Magnitude Comparisons: Alt C, Year 0, Summer vs. Baseline, Summer
Table 4-8. Tidal Slough Peak Velocity Comparisons: Alt C, Year 0, Summer vs. Baseline, Summer
Table 5-1. South Bay Tidal Water Surface Elevation and Phase Differences under Alt C, Year 0, Winter
Table 5-2. Tidal Slough Water Surface Elevation and Phase Differences under Alt C, Year 0, Winter
Table 5-3. Comparison of Tidal Prism between Baseline and Alternative C, Year 0, Winter
Table 5-4. South Bay Salinity Differences under Alt C, Year 0, Winter
Table 5-5. Tidal Slough Salinity Differences under Alt C, Year 0, Winter
Table 5-6. South Bay Peak Velocity Magnitude Comparisons: Alternative C, Winter, Year 0 vs. Baseline, Winter
Table 5-7. Tidal Slough Peak Velocity Comparisons: Alternative C, Winter, Year 0 vs. Baseline, Winter
Table 6-1. South Bay Tidal Water Surface Elevation and Phase Differences under Alt A, Year 50, Summer
Table 6-2. Tidal Slough Water Surface Elevation and Phase Differences under Alt A, Year 50, Summer
Table 6-3. Comparison of Tidal Prism between Baseline and Alternative A, year 50, summer
Table 6-4. South Bay Salinity Differences under Alt A, Year 50, Summer
Table 6-5. Tidal Slough Salinity Differences under Alt A, Year 50, Summer
Table 6-6. South Bay Peak Velocity Magnitude Comparisons: Alt A, Year 50, Summer vs. Baseline, Summer
Table 6-7. Tidal Slough Peak Velocity Magnitude Comparisons: Alt A, Year 50, Summer vs. Baseline, Summer
Table 7-1. South Bay Water Surface Elevation and Phase Differences under Alt C, Year 50, Summer
Table 7-2. South Bay Tidal Datums Differences under Alt C, Year 50, Summer and Alt A, Year 50, Summer
Table 7-3. Tidal Slough Water Surface Elevation and Phase Differences under Alt C, Year 50, Summer
Table 7-4. Comparison of Tidal Prism between Baseline and Alternative C, year 50, summer
Table 7-5. South Bay Salinity Differences under Alt C, Year 50, Summer
Table 7-6. Tidal Slough Salinity Differences under Alt C, Year 50, Summer
Table 7-7. South Bay Peak Velocity Magnitude Comparisons: Alt C, Year 50, Summer vs. Baseline, Summer
Table 7-8. Tidal Slough Peak Velocity Magnitude Comparisons: Alt C, Year 50, Summer vs. Baseline, Summer

FIGURES

Figure 2-1. Greater San Francisco Bay Model Extent and Bathymetry
Figure 2-2. Greater San Francisco Bay Model Grid Resolution
Figure 2-3. South Bay Model Extent and Bathymetry
Figure 2-4. South Bay Model Grid Resolution
Figure 3-1. Baseline, Eden Landing
Figure 3-2. Baseline, Alviso
Figure 3-3. Baseline, Ravenswood
Figure 3-4. Model Bathymetry, Island Ponds
Figure 3-5. Model Bathymetry, Eden Landing Restoration
Figure 3-6. Model Open Boundary, Water Level and Salinity, May-June 2001
Figure 3-7. Alternative C: Tidal Habitat Emphasis, Eden Landing, Year 0
Figure 3-8. Alternative C: Tidal Habitat Emphasis, Alviso, Year 0
Figure 3-9. Alternative C: Tidal Habitat Emphasis, Ravenswood, Year 0
Figure 3-10. Station Locations
Figure 3-11. South Bay Model Open Boundary Comparison
Figure 3-12. GSFB Model Water Level Comparisons
Figure 3-13. GSFB and South Bay Model Tidal Prism Comparisons
Figure 3-14. South Bay Model Water Level Comparisons
Figure 3-15. Eden Landing Breach Locations
Figure 3-16. Alviso Breach Locations
Figure 3-17. Ravenswood Breach Locations
Figure 3-18. Alternative A: No Action, Eden Landing, Year 50
Figure 3-19. Alternative A: No Action, Alviso, Year 50
Figure 3-20. Alternative A: No Action, Ravenswood, Year 50
Figure 4-1. South Bay Stations
Figure 4-2. Eden Landing Stations
Figure 4-3. Ravenswood Stations
Figure 4-4. Alviso Stations
Figure 4-5. Time Series Snapshot Points
Figure 4-6. Water Levels, San Mateo Bridge, Alt C, Year 0, Summer
Figure 4-7. Water Levels, Dumbarton Bridge, Alt C, Year 0, Summer
Figure 4-8. Water Levels, Channel Marker 17, Alt C, Year 0, Summer
Figure 4-9. Changes in MLLW, Alt C, Year 0, Summer
Figure 4-10. Changes in MHHW, Alt C, Year 0, Summer
Figure 4-11. Changes in Tidal Propagation, Alt C, Year 0, Summer
Figure 4-12. Water Levels, ACFCC Downstream, Alt C, Year 0, Summer
Figure 4-13. Water Levels, ACFCC Upstream, Alt C, Year 0, Summer
Figure 4-14. Water Levels, Old Alameda Creek Downstream, Alt C, Year 0, Summer
Figure 4-15. Water Levels, Old Alameda Creek Upstream, Alt C, Year 0, Summer
Figure 4-16. Water Levels, Coyote Creek Power Tower, Alt C, Year 0, Summer
Figure 4-17. Water Levels, Coyote Creek Railroad Bridge, Alt C, Year 0, Summer
Figure 4-18. Water Levels, Coyote Creek/Island Ponds, Year 0, Summer
Figure 4-19. Water Levels, Coyote Creek Upstream, Year 0, Summer
Figure 4-20. Water Levels, Mud Slough Downstream, Alt C, Year 0, Summer
Figure 4-21. Water Levels, Mud Slough Upstream, Alt C, Year 0, Summer
Figure 4-22. Water Levels, Alviso Slough Downstream, Alt C, Year 0, Summer
Figure 4-23. Water Levels, Alviso Slough Upstream, Alt C, Year 0, Summer
Figure 4-24. Water Levels, Guadalupe Slough Downstream, Alt C, Year 0, Summer
Figure 4-25. Water Levels, Guadalupe Slough Upstream, Alt C, Year 0, Summer
Figure 4-26. Water Levels, Moffett Channel, Alt C, Year 0, Summer
Figure 4-27. Water Levels, Steven Creek Downstream, Alt C, Year 0, Summer
Figure 4-28. Water Levels, Stevens Creek Upstream, Alt C, Year 0, Summer
Figure 4-29. Water Levels, Mountain View Slough Downstream, Alt C, Year 0, Summer
Figure 4-30. Water Levels, Mountain View Slough Upstream, Alt C, Year 0, Summer
Figure 4-31. Water Levels, Charleston Slough Downstream, Alt C, Year 0, Summer
Figure 4-32. Water Levels, Charleston Slough Upstream, Alt C, Year 0, Summer
Figure 4-33. Water Levels, Ravenswood Slough Downstream, Alt C, Year 0, Summer
Figure 4-34. Water Levels, Ravenswood Slough Upstream, Alt C, Year 0, Summer
Figure 4-35. Water Levels, Pond A20, Alt C, Year 0, Summer
Figure 4-36. Water Levels, ELER North, Alt C, Year 0, Summer
Figure 4-37. Water Levels, ELER South, Alt C, Year 0, Summer
Figure 4-38. Water Levels, Pond E6B, Alt C, Year 0, Summer
Figure 4-39. Water Levels, Pond A7, Alt C, Year 0, Summer
Figure 4-40. Water Levels, Pond A8, Alt C, Year 0, Summer
Figure 4-41. South Bay Tidal Prism Cross-Section Locations
Figure 4-42. Eden Landing Tidal Prism Cross-Section Locations
Figure 4-43. Alviso Tidal Prism Cross-Section Locations
Figure 4-44. Ravenswood Tidal Prism Cross-Section Locations
Figure 4-45. Tidal Prism, San Mateo and Dumbarton Bridges, Alt C, Year 0, Summer
Figure 4-46. Tidal Prism, Channel Marker 17 and Calaveras Point, Alt C, Year 0, Summer
Figure 4-47. Tidal Prism, ACFCC and Old Alameda Creek, Alt C, Year 0, Summer
Figure 4-48. Tidal Prism, Coyote Creek, Alt C, Year 0, Summer
Figure 4-49. Tidal Prism, Alviso and Guadalupe Sloughs, Alt C, Year 0, Summer
Figure 4-50. Tidal Prism, Stevens Creek and, Mountain View Sloughs, Alt C, Year 0, Summer
Figure 4-51. Tidal Prism, Charleston and Ravenswood Sloughs, Alt C, Year 0, Summer
Figure 4-52. Salinity at Spring HHW Jun – Aug, Alt C, Year 0, Summer
Figure 4-53. Salinity, San Mateo Bridge, Alt C, Year 0, Summer
Figure 4-54. Salinity, Dumbarton Bridge, Alt C, Year 0, Summer
Figure 4-55. Salinity, Channel Marker 17, Alt C, Year 0, Summer
Figure 4-56. Salinity at Spring HHW, Alt C, Year 0, Summer
Figure 4-57. Salinity at Spring LLW, Alt C, Year 0, Summer
Figure 4-58. Salinity, ACFCC Downstream, Alt C, Year 0, Summer
Figure 4-59. Salinity, ACFCC Upstream, Alt C, Year 0, Summer
Figure 4-60. Salinity, Old Alameda Creek Downstream, Alt C, Year 0, Summer
Figure 4-61. Salinity, Old Alameda Creek Upstream, Alt C, Year 0, Summer
Figure 4-62. Salinity at Spring HHW, Eden Landing, Alt C, Year 0, Summer
Figure 4-63. Salinity at Spring LLW, Eden Landing, Alt C, Year 0, Summer
Figure 4-64. Salinity, Coyote Creek Power Tower, Alt C, Year 0, Summer
Figure 4-65. Salinity, Coyote Creek Railroad Bridge, Alt C, Year 0, Summer
Figure 4-66. Salinity, Coyote Creek/Island Ponds, Year 0, Summer
Figure 4-67. Salinity, Coyote Creek Upstream, Year 0, Summer
Figure 4-68. Salinity, Mud Slough Downstream, Alt C, Year 0, Summer
Figure 4-69. Salinity, Mud Slough Upstream, Alt C, Year 0, Summer
Figure 4-70. Salinity, Alviso Slough Downstream, Alt C, Year 0, Summer Summer
Figure 4-71. Salinity, Alviso Slough Upstream, Alt C, Year 0, Summer Summer
Figure 4-72. Salinity, Guadalupe Slough Downstream, Alt C, Year 0, Summer Summer
Figure 4-73. Salinity, Guadalupe Slough Upstream, Alt C, Year 0, Summer Summer
Figure 4-74. Salinity, Moffett Channel, Alt C, Year 0, Summer Summer
Figure 4-75. Salinity, Steven Creek Downstream, Alt C, Year 0, Summer Summer
Figure 4-76. Salinity, Stevens Creek Upstream, Alt C, Year 0, Summer Summer
Figure 4-77. Salinity, Mountain View Slough Downstream, Alt C, Year 0, Summer Summer
Figure 4-78. Salinity, Mountain View Slough Upstream, Alt C, Year 0, Summer Summer
Figure 4-79. Salinity, Charleston Slough Downstream, Alt C, Year 0, Summer Summer
Figure 4-80. Salinity, Charleston Slough Upstream, Alt C, Year 0, Summer Summer
Figure 4-81. Salinity at Spring HHW, Alt C, Alviso, Year 0, Summer Summer
Figure 4-82. Salinity at Spring LLW, Alt C, Alviso, Year 0, Summer Summer
Figure 4-83. Salinity, Ravenswood Slough Downstream, Ravenswood, Alt C, Year 0, Summer Summer
Figure 4-84. Salinity, Ravenswood Slough Upstream, Ravenswood, Alt C, Year 0, Summer Summer
Figure 4-85. Salinity at Spring HHW, Ravenswood, Alt C, Year 0, Summer
Figure 4-86. Salinity at Spring LLW, Ravenswood, Alt C, Year 0, Summer
Figure 4-87. Velocity, San Mateo Bridge, Alt C, Year 0, Summer
Figure 4-88. Velocity, Dumbarton Bridge, Alt C, Year 0, Summer
Figure 4-89. Velocity, Channel Marker 17, Alt C, Year 0, Summer
Figure 4-90. Velocity at Spring Flood, Alt C, Year 0, Summer
Figure 4-91. Velocity at Spring Ebb, Alt C, Year 0, Summer
Figure 4-92. Velocity, ACFCC Downstream, Alt C, Year 0, Summer
Figure 4-93. Velocity, Old Alameda Creek Downstream, Alt C, Year 0, Summer
Figure 4-94. Velocity at Spring Flood, Eden Landing, Alt C, Year 0, Summer
Figure 4-95. Velocity at Spring Ebb, Eden Landing, Alt C, Year 0, Summer
Figure 4-96. Velocity, Coyote Creek Power Tower, Alt C, Year 0, Summer
Figure 4-97. Velocity, Coyote Creek Railroad Bridge, Alt C, Year 0, Summer
Figure 4-98. Velocity, Coyote Creek/Island Ponds, Year 0, Summer
Figure 4-99. Velocity, Mud Slough Downstream, Alt C, Year 0, Summer
Figure 4-100. Velocity, Alviso Slough Downstream, Alt C, Year 0, Summer
Figure 4-101. Velocity, Guadalupe Slough Downstream, Alt C, Year 0, Summer
Figure 4-102. Velocity, Moffett Channel, Alt C, Year 0, Summer
Figure 4-103. Velocity, Steven Creek Downstream, Alt C, Year 0, Summer
Figure 4-104. Velocity, Mountain View Slough Downstream, Alt C, Year 0, Summer
Figure 4-105. Velocity, Charleston Slough Downstream, Alt C, Year 0, Summer
Figure 4-106. Velocity at Spring Flood, Alviso, Alt C, Year 0, Summer
Figure 4-107. Velocity at Spring Ebb, Alviso, Alt C, Year 0, Summer
Figure 4-108. Velocity, Ravenswood Slough Downstream, Alt C, Year 0, Summer
Figure 4-109. Velocity at Spring Flood, Ravenswood, Alt C, Year 0, Summer
Figure 4-110. Velocity at Spring Ebb, Ravenswood, Alt C, Year 0, Summer
Figure 4-111. South Bay Residual Circulation, Baseline, Summer
Figure 4-112. South Bay Residual Circulation, Alt C, Year 0, Summer
Figure 4-113. South Bay Residual Circulation, Difference, Year 0, Summer
Figure 4-114. Far South Bay Residual Circulation, Baseline, Summer
Figure 4-115. Far South Bay Residual Circulation, Alt C, Year 0, Summer
Figure 4-116. Far South Bay Residual Circulation, Difference, Year 0, Summer
Figure 4-117. Tidal Bed Shear Stress, South Bay, Alt C, Year 0, Summer
Figure 4-118. Tidal Bed Shear Stress, Eden Landing, Alt C, Year 0, Summer
Figure 4-119. Tidal Bed Shear Stress, Alviso, Alt C, Year 0, Summer
Figure 4-120. Tidal Bed Shear Stress, Ravenswood, Alt C, Year 0, Summer
Figure 4-121. Total Bed Shear Stress, South Bay, Alt C, Year 0, Summer
Figure 4-122. Total Bed Shear Stress, Eden Landing, Alt C, Year 0, Summer
Figure 4-123. Total Bed Shear Stress, Alviso, Alt C, Year 0, Summer
Figure 4-124. Total Bed Shear Stress, Ravenswood, Alt C, Year 0, Summer
Figure 5-1. Water Levels, San Mateo Bridge, Alt C, Year 0, Winter
Figure 5-2. Water Levels, Dumbarton Bridge, Alt C, Year 0, Winter
Figure 5-3. Water Levels, Channel Marker 17, Alt C, Year 0, Winter
Figure 5-4. Changes in MLLW, Alt C, Year 0, Winter
Figure 5-5. Changes in MHHW, Alt C, Year 0, Winter
Figure 5-6. Changes in Tidal Propagation, Alt C, Year 0, Winter
Figure 5-7. Water Levels, ACFCC Downstream, Alt C, Year 0, Winter
Figure 5-8. Water Levels, ACFCC Upstream, Alt C, Year 0, Winter
Figure 5-9. Water Levels, Old Alameda Creek Downstream, Alt C, Year 0, Winter
Figure 5-10. Water Levels, Old Alameda Creek Upstream, Alt C, Year 0, Winter
Figure 5-11. Water Levels, Coyote Creek Power Tower, Alt C, Year 0, Winter
Figure 5-12. Water Levels, Coyote Creek Railroad Bridge, Alt C, Year 0, Winter
Figure 5-13. Water Levels, Coyote Creek/Island Ponds, Year 0, Winter
Figure 5-14. Water Levels, Coyote Creek Upstream, Year 0, Winter
Figure 5-15. Water Levels, Mud Slough Downstream, Alt C, Year 0, Winter
Figure 5-16. Water Levels, Mud Slough Upstream, Alt C, Year 0, Winter
Figure 5-17. Water Levels, Alviso Slough Downstream, Alt C, Year 0, Winter
Figure 5-18. Water Levels, Alviso Slough Upstream, Alt C, Year 0, Winter
Figure 5-19. Water Levels, Guadalupe Slough Downstream, Alt C, Year 0, Winter
Figure 5-20. Water Levels, Guadalupe Slough Upstream, Alt C, Year 0, Winter
Figure 5-21. Water Levels, Moffett Channel, Alt C, Year 0, Winter
Figure 5-22. Water Levels, Steven Creek Downstream, Alt C, Year 0, Winter
Figure 5-23. Water Levels, Stevens Creek Upstream, Alt C, Year 0, Winter
Figure 5-24. Water Levels, Mountain View Slough Downstream, Alt C, Year 0, Winter
Figure 5-25. Water Levels, Mountain View Slough Upstream, Alt C, Year 0, Winter
Figure 5-26. Water Levels, Charleston Slough Downstream, Alt C, Year 0, Winter
Figure 5-27. Water Levels, Charleston Slough Upstream, Alt C, Year 0, Winter
Figure 5-28. Water Levels, Ravenswood Slough Downstream, Alt C, Year 0, Winter
Figure 5-29. Water Levels, Ravenswood Slough Upstream, Alt C, Year 0, Winter
Figure 5-30. Water Levels, Pond A20, Alt C, Year 0, Winter
Figure 5-31. Water Levels, ELER North, Alt C, Year 0, Winter
Figure 5-32. Water Levels, ELER South, Alt C, Year 0, Winter
Figure 5-33. Water Levels, Pond E6B, Alt C, Year 0, Winter
Figure 5-34. Water Levels, Pond A7, Alt C, Year 0, Winter
Figure 5-35. Water Levels, Pond A8, Alt C, Year 0, Winter
Figure 5-36. Tidal Prism, San Mateo and Dumbarton Bridges, Alt C, Year 0, Winter
Figure 5-37. Tidal Prism, Channel Marker 17 and Calaveras Point, Alt C, Year 0, Winter
Figure 5-38. Tidal Prism, ACFCC and Old Alameda Creek, Alt C, Year 0, Winter
Figure 5-39. Tidal Prism, Coyote Creek, Alt C, Year 0, Winter
Figure 5-40. Tidal Prism, Alviso and Guadalupe Sloughs, Alt C, Year 0, Winter
Figure 5-41. Tidal Prism, Stevens Creek and, Mountain View Sloughs, Alt C, Year 0, Winter
Figure 5-42. Tidal Prism, Charleston and Ravenswood Sloughs, Alt C, Year 0, Winter
Figure 5-43. Salinity, San Mateo Bridge, Alt C, Year 0, Winter
Figure 5-44. Salinity, Dumbarton Bridge, Alt C, Year 0, Winter
Figure 5-45. Salinity, Channel Marker 17, Alt C, Year 0, Winter
Figure 5-46. Salinity at Spring HHW, Alt C, Year 0, Winter
Figure 5-47. Salinity at Spring LLW, Alt C, Year 0, Winter
Figure 5-48. Salinity, ACFCC Downstream, Alt C, Year 0, Winter
Figure 5-49. Salinity, ACFCC Upstream, Alt C, Year 0, Winter
Figure 5-50. Salinity, Old Alameda Creek Downstream, Alt C, Year 0, Winter
Figure 5-51. Salinity, Old Alameda Creek Upstream, Alt C, Year 0, Winter
Figure 5-52. Salinity at Spring HHW, Eden Landing, Alt C, Year 0, Winter
Figure 5-53. Salinity at Spring LLW, Eden Landing, Alt C, Year 0, Winter
Figure 5-54. Salinity, Coyote Creek Power Tower, Alt C, Year 0, Winter
Figure 5-55. Salinity, Coyote Creek Railroad Bridge, Alt C, Year 0, Winter
Figure 5-56. Salinity, Coyote Creek/Island Ponds, Year 0, Winter
Figure 5-57. Salinity, Coyote Creek Upstream, Year 0, Winter
Figure 5-58. Salinity, Mud Slough Downstream, Alt C, Year 0, Winter
Figure 5-59. Salinity, Mud Slough Upstream, Alt C, Year 0, Winter
Figure 5-60. Salinity, Alviso Slough Downstream, Alt C, Year 0, Winter
Figure 5-61. Salinity, Alviso Slough Upstream, Alt C, Year 0, Winter
Figure 5-62. Salinity, Guadalupe Slough Downstream, Alt C, Year 0, Winter
Figure 5-63. Salinity, Guadalupe Slough Upstream, Alt C, Year 0, Winter
Figure 5-64. Salinity, Moffett Channel, Alt C, Year 0, Winter
Figure 5-65. Salinity, Steven Creek Downstream, Alt C, Year 0, Winter
Figure 5-66. Salinity, Stevens Creek Upstream, Alt C, Year 0, Winter
Figure 5-67. Salinity, Mountain View Slough Downstream, Alt C, Year 0, Winter
Figure 5-68. Salinity, Mountain View Slough Upstream, Alt C, Year 0, Winter
Figure 5-69. Salinity, Charleston Slough Downstream, Alt C, Year 0, Winter
Figure 5-70. Salinity, Charleston Slough Upstream, Alt C, Year 0, Winter
Figure 5-71. Salinity at Spring HHW, Alt C, Alviso, Year 0, Winter
Figure 5-72. Salinity at Spring LLW, Alt C, Alviso, Year 0, Winter
Figure 5-73. Salinity, Ravenswood Slough Downstream, Ravenswood, Alt C, Year 0, Winter
Figure 5-74. Salinity, Ravenswood Slough Upstream, Ravenswood, Alt C, Year 0, Winter
Figure 5-75. Salinity at Spring HHW, Ravenswood, Alt C, Year 0, Winter
Figure 5-76. Salinity at Spring LLW, Ravenswood, Alt C, Year 0, Winter
Figure 5-77. Velocity, San Mateo Bridge, Alt C, Year 0, Winter
Figure 5-78. Velocity, Dumbarton Bridge, Alt C, Year 0, Winter
Figure 5-79. Velocity, Channel Marker 17, Alt C, Year 0, Winter
Figure 5-80. Velocity at Spring Flood, Alt C, Year 0, Winter
Figure 5-81. Velocity at Spring Ebb, Alt C, Year 0, Winter
Figure 5-82. Velocity, ACFCC Downstream, Alt C, Year 0, Winter
Figure 5-83. Velocity, Old Alameda Creek Downstream, Alt C, Year 0, Winter
Figure 5-84. Velocity at Spring Flood, Eden Landing, Alt C, Year 0, Winter
Figure 5-85. Velocity at Spring Ebb, Eden Landing, Alt C, Year 0, Winter
Figure 5-86. Velocity, Coyote Creek Power Tower, Alt C, Year 0, Winter
Figure 5-87. Velocity, Coyote Creek Railroad Bridge, Alt C, Year 0, Winter
Figure 5-88. Velocity, Coyote Creek/Island Ponds, Year 0, Winter
Figure 5-89. Velocity, Mud Slough Downstream, Alt C, Year 0, Winter
Figure 5-90. Velocity, Alviso Slough Downstream, Alt C, Year 0, Winter
Figure 5-91. Velocity, Guadalupe Slough Downstream, Alt C, Year 0, Winter
Figure 5-92. Velocity, Moffett Channel, Alt C, Year 0, Winter
Figure 5-93. Velocity, Steven Creek Downstream, Alt C, Year 0, Winter
Figure 5-94. Velocity, Mountain View Slough Downstream, Alt C, Year 0, Winter
Figure 5-95. Velocity, Charleston Slough Downstream, Alt C, Year 0, Winter
Figure 5-96. Velocity at Spring Flood, Alviso, Alt C, Year 0, Winter
Figure 5-97. Velocity at Spring Ebb, Alviso, Alt C, Year 0, Winter
Figure 5-98. Velocity, Ravenswood Slough Downstream, Alt C, Year 0, Winter
Figure 5-99. Velocity at Spring Flood, Ravenswood, Alt C, Year 0, Winter
Figure 5-100. Velocity at Spring Ebb, Ravenswood, Alt C, Year 0, Winter
Figure 5-101. South Bay Residual Circulation, Baseline, Winter
Figure 5-102. South Bay Residual Circulation, Alt C, Year 0, Winter
Figure 5-103. South Bay Residual Circulation, Difference, Year 0, Winter
Figure 5-104. Far South Bay Residual Circulation, Baseline, Winter
Figure 5-105. Far South Bay Residual Circulation, Alt C, Year 0, Winter
Figure 5-106. Far South Bay Residual Circulation, Difference, Year 0, Winter
Figure 5-107. Tidal Bed Shear Stress, South Bay, Alt C, Year 0, Winter
Figure 5-108. Tidal Bed Shear Stress, Eden Landing, Alt C, Year 0, Winter
Figure 5-109. Tidal Bed Shear Stress, Alviso, Alt C, Year 0, Winter
Figure 5-110. Tidal Bed Shear Stress, Ravenswood, Alt C, Year 0, Winter
Figure 5-111. Total Bed Shear Stress, South Bay, Alt C, Year 0, Winter
Figure 5-112. Total Bed Shear Stress, Eden Landing, Alt C, Year 0, Winter
Figure 5-113. Total Bed Shear Stress, Alviso, Alt C, Year 0, Winter
Figure 5-114. Total Bed Shear Stress, Ravenswood, Alt C, Year 0, Winter
Figure 6-1. Water Levels, San Mateo Bridge, Alt A, Year 50, Summer
Figure 6-2. Water Levels, Dumbarton Bridge, Alt A, Year 50, Summer
Figure 6-3. Water Levels, Channel Marker 17, Alt A, Year 50, Summer
Figure 6-4. Changes in MLLW, Alt A, Year 50, Summer
Figure 6-5. Changes in MHHW, Alt A, Year 50, Summer
Figure 6-6. Changes in Tidal Propagation, Alt A, Year 50, Summer
Figure 6-7. Water Levels, ACFCC Downstream, Alt A, Year 50, Summer
Figure 6-8. Water Levels, ACFCC Upstream, Alt A, Year 50, Summer
Figure 6-9. Water Levels, Old Alameda Creek Downstream, Alt A, Year 50, Summer
Figure 6-10. Water Levels, Old Alameda Creek Upstream, Alt A, Year 50, Summer
Figure 6-11. Water Levels, Coyote Creek Power Tower, Alt A, Year 50, Summer
Figure 6-12. Water Levels, Coyote Creek Railroad Bridge, Alt A, Year 50, Summer
Figure 6-13. Water Levels, Coyote Creek/Island Ponds, Year 50, Summer
Figure 6-14. Water Levels, Coyote Creek Upstream, Year 50, Summer
Figure 6-15. Water Levels, Mud Slough Downstream, Alt A, Year 50, Summer
Figure 6-16. Water Levels, Mud Slough Upstream, Alt A, Year 50, Summer
Figure 6-17. Water Levels, Alviso Slough Downstream, Alt A, Year 50, Summer
Figure 6-18. Water Levels, Alviso Slough Upstream, Alt A, Year 50, Summer
Figure 6-19. Water Levels, Guadalupe Slough Downstream, Alt A, Year 50, Summer
Figure 6-20. Water Levels, Guadalupe Slough Upstream, Alt A, Year 50, Summer
Figure 6-21. Water Levels, Moffett Channel, Alt A, Year 50, Summer
Figure 6-22. Water Levels, Steven Creek Downstream, Alt A, Year 50, Summer
Figure 6-23. Water Levels, Stevens Creek Upstream, Alt A, Year 50, Summer
Figure 6-24. Water Levels, Mountain View Slough Downstream, Alt A, Year 50, Summer
Figure 6-25. Water Levels, Mountain View Slough Upstream, Alt A, Year 50, Summer
Figure 6-26. Water Levels, Charleston Slough Downstream, Alt A, Year 50, Summer
Figure 6-27. Water Levels, Charleston Slough Upstream, Alt A, Year 50, Summer
Figure 6-28. Water Levels, Ravenswood Slough Downstream, Alt A, Year 50, Summer
Figure 6-29. Water Levels, Ravenswood Slough Upstream, Alt A, Year 50, Summer
Figure 6-30. Tidal Prism, San Mateo and Dumbarton Bridges, Alt A, Year 50, Summer
Figure 6-31. Tidal Prism, Channel Marker 17 and Calaveras Point, Alt A, Year 50, Summer
Figure 6-32. Tidal Prism, ACFCC and Old Alameda Creek, Alt C, Year A, Summer
Figure 6-33. Tidal Prism, Coyote Creek, Alt A, Year 50, Summer
Figure 6-34. Tidal Prism, Alviso and Guadalupe Sloughs, Alt A, Year 50, Summer
Figure 6-35. Tidal Prism, Stevens Creek and, Mountain View Sloughs, Alt A, Year 50, Summer
Figure 6-36. Tidal Prism, Charleston and Ravenswood Sloughs, Alt A, Year 50, Summer
Figure 6-37. Salinity, San Mateo Bridge, Alt A, Year 50, Summer
Figure 6-38. Salinity, Dumbarton Bridge, Alt A, Year 50, Summer
Figure 6-39. Salinity, Channel Marker 17, Alt A, Year 50, Summer
Figure 6-40. Salinity at Spring HHW, Alt A, Year 50, Summer
Figure 6-41. Salinity at Spring LLW, Alt A, Year 50, Summer
Figure 6-42. Salinity, ACFCC Downstream, Alt A, Year 50, Summer
Figure 6-43. Salinity, ACFCC Upstream, Alt A, Year 50, Summer
Figure 6-44. Salinity, Old Alameda Creek Downstream, Alt A, Year 50, Summer
Figure 6-45. Salinity, Old Alameda Creek Upstream, Alt A, Year 50, Summer
Figure 6-46. Salinity at Spring HHW, Eden Landing, Alt A, Year 50, Summer
Figure 6-47. Salinity at Spring LLW, Eden Landing, Alt A, Year 50, Summer
Figure 6-48. Salinity, Coyote Creek Power Tower, Alt A, Year 50, Summer
Figure 6-49. Salinity, Coyote Creek Railroad Bridge, Alt A, Year 50, Summer
Figure 6-50. Salinity, Coyote Creek/Island Ponds, Year 50, Summer
Figure 6-51. Salinity, Coyote Creek Upstream, Year 50, Summer
Figure 6-52. Salinity, Mud Slough Downstream, Alt A, Year 50, Summer
Figure 6-53. Salinity, Mud Slough Upstream, Alt A, Year 50, Summer
Figure 6-54. Salinity, Alviso Slough Downstream, Alt A, Year 50, Summer
Figure 6-55. Salinity, Alviso Slough Upstream, Alt A, Year 50, Summer
Figure 6-56. Salinity, Guadalupe Slough Downstream, Alt A, Year 50, Summer
Figure 6-57. Salinity, Guadalupe Slough Upstream, Alt A, Year 50, Summer
Figure 6-58. Salinity, Moffett Channel, Alt A, Year 50, Summer
Figure 6-59. Salinity, Steven Creek Downstream, Alt A, Year 50, Summer
Figure 6-60. Salinity, Stevens Creek Upstream, Alt A, Year 50, Summer
Figure 6-61. Salinity, Mountain View Slough Downstream, Alt A, Year 50, Summer
Figure 6-62. Salinity, Mountain View Slough Upstream, Alt A, Year 50, Summer
Figure 6-63. Salinity, Charleston Slough Downstream, Alt A, Year 50, Summer
Figure 6-64. Salinity, Charleston Slough Upstream, Alt A, Year 50, Summer
Figure 6-65. Salinity at Spring HHW, Alt A, Alviso, Year 50, Summer
Figure 6-66. Salinity at Spring LLW, Alt A, Alviso, Year 50, Summer
Figure 6-67. Salinity, Ravenswood Slough Downstream, Ravenswood, Alt A, Year 50, Summer
Figure 6-68. Salinity, Ravenswood Slough Upstream, Ravenswood, Alt A, Year 50, Summer
Figure 6-69. Salinity at Spring HHW, Ravenswood, Alt A, Year 50, Summer
Figure 6-70. Salinity at Spring LLW, Ravenswood, Alt A, Year 50, Summer
Figure 6-71. Velocity, San Mateo Bridge, Alt A, Year 50, Summer
Figure 6-72. Velocity, Dumbarton Bridge, Alt A, Year 50, Summer
Figure 6-73. Velocity, Channel Marker 17, Alt A, Year 50, Summer
Figure 6-74. Velocity at Spring Flood, Alt A, Year 50, Summer
Figure 6-75. Velocity at Spring Ebb, Alt A, Year 50, Summer
Figure 6-76. Velocity, ACFCCC Downstream, Alt A, Year 50, Summer
Figure 6-77. Velocity, Old Alameda Creek Downstream, Alt A, Year 50, Summer
Figure 6-78. Velocity at Spring Flood, Eden Landing, Alt A, Year 50, Summer
Figure 6-79. Velocity at Spring Ebb, Eden Landing, Alt A, Year 50, Summer
Figure 6-80. Velocity, Coyote Creek Power Tower, Alt A, Year 50, Summer
Figure 6-81. Velocity, Coyote Creek Railroad Bridge, Alt A, Year 50, Summer
Figure 6-82. Velocity, Coyote Creek/Island Ponds, Year 50, Summer
Figure 6-83. Velocity, Mud Slough Downstream, Alt A, Year 50, Summer
Figure 6-84. Velocity, Alviso Slough Downstream, Alt A, Year 50, Summer
Figure 6-85. Velocity, Guadalupe Slough Downstream, Alt A, Year 50, Summer
Figure 6-86. Velocity, Moffett Channel, Alt A, Year 50, Summer
Figure 6-87. Velocity, Steven Creek Downstream, Alt A, Year 50, Summer
Figure 6-88. Velocity, Mountain View Slough Downstream, Alt A, Year 50, Summer
Figure 6-89. Velocity, Charleston Slough Downstream, Alt A, Year 50, Summer
Figure 6-90. Velocity at Spring Flood, Alviso, Alt A, Year 50, Summer
Figure 6-91. Velocity at Spring Ebb, Alviso, Alt A, Year 50, Summer
Figure 6-92. Velocity, Ravenswood Slough Downstream, Alt A, Year 50, Summer
Figure 6-93. Velocity at Spring Flood, Ravenswood, Alt A, Year 50, Summer
Figure 6-94. Velocity at Spring Ebb, Ravenswood, Alt A, Year 50, Summer
Figure 6-95. South Bay Residual Circulation, Baseline, Summer
Figure 6-96. South Bay Residual Circulation, Alt A, Year 50, Summer
Figure 6-97. South Bay Residual Circulation, Difference, Year 50, Summer
Figure 6-98. Far South Bay Residual Circulation, Baseline, Summer
Figure 6-99. Far South Bay Residual Circulation, Alt A, Year 50, Summer
Figure 6-100. Far South Bay Residual Circulation, Difference, Year 50, Summer
Figure 6-101. Tidal Bed Shear Stress, South Bay, Alt A, Year 50, Summer
Figure 6-102. Tidal Bed Shear Stress, Eden Landing, Alt A, Year 50, Summer
Figure 6-103. Tidal Bed Shear Stress, Alviso, Alt A, Year 50, Summer
Figure 6-104. Tidal Bed Shear Stress, Ravenswood, Alt A, Year 50, Summer
Figure 6-105. Total Bed Shear Stress, South Bay, Alt A, Year 50, Summer
Figure 6-106. Total Bed Shear Stress, Eden Landing, Alt A, Year 50, Summer
Figure 6-107. Total Bed Shear Stress, Alviso, Alt A, Year 50, Summer
Figure 6-108. Total Bed Shear Stress, Ravenswood, Alt A, Year 50, Summer
Figure 7-1. Water Levels, San Mateo Bridge, Alt C, Year 50, Summer
Figure 7-2. Water Levels, Dumbarton Bridge, Alt C, Year 50, Summer
Figure 7-3. Water Levels, Channel Marker 17, Alt C, Year 50, Summer
Figure 7-4. Changes in MLLW, Alt C, Year 50, Summer
Figure 7-5. Changes in MHHW, Alt C, Year 50, Summer
Figure 7-6. Changes in Tidal Propagation, Alt C, Year 50, Summer
Figure 7-7. Water Levels, ACFCC Downstream, Alt C, Year 50, Summer
Figure 7-8. Water Levels, ACFCC Upstream, Alt C, Year 50, Summer
Figure 7-9. Water Levels, Old Alameda Creek Downstream, Alt C, Year 50, Summer
Figure 7-10. Water Levels, Old Alameda Creek Upstream, Alt C, Year 50, Summer
Figure 7-11. Water Levels, Coyote Creek Power Tower, Alt C, Year 50, Summer
Figure 7-12. Water Levels, Coyote Creek Railroad Bridge, Alt C, Year 50, Summer
Figure 7-13. Water Levels, Coyote Creek/Island Ponds, Year 50, Summer
Figure 7-14. Water Levels, Coyote Creek Upstream, Year 50, Summer
Figure 7-15. Water Levels, Mud Slough Downstream, Alt C, Year 50, Summer
Figure 7-16. Water Levels, Mud Slough Upstream, Alt C, Year 50, Summer
Figure 7-17. Water Levels, Alviso Slough Downstream, Alt C, Year 50, Summer
Figure 7-18. Water Levels, Alviso Slough Upstream, Alt C, Year 50, Summer
Figure 7-19. Water Levels, Guadalupe Slough Downstream, Alt C, Year 50, Summer
Figure 7-20. Water Levels, Guadalupe Slough Upstream, Alt C, Year 50, Summer
Figure 7-21. Water Levels, Moffett Channel, Alt C, Year 50, Summer
Figure 7-22. Water Levels, Steven Creek Downstream, Alt C, Year 50, Summer
Figure 7-23. Water Levels, Stevens Creek Upstream, Alt C, Year 50, Summer
Figure 7-24. Water Levels, Mountain View Slough Downstream, Alt C, Year 50, Summer
Figure 7-25. Water Levels, Mountain View Slough Upstream, Alt C, Year 50, Summer
Figure 7-26. Water Levels, Charleston Slough Downstream, Alt C, Year 50, Summer
Figure 7-27. Water Levels, Charleston Slough Upstream, Alt C, Year 50, Summer
Figure 7-28. Water Levels, Ravenswood Slough Downstream, Alt C, Year 50, Summer
Figure 7-29. Water Levels, Ravenswood Slough Upstream, Alt C, Year 50, Summer
Figure 7-30. Tidal Prism, San Mateo and Dumbarton Bridges, Alt C, Year 50, Summer
Figure 7-31. Tidal Prism, Channel Marker 17 and Calaveras Point, Alt C, Year 50, Summer
Figure 7-32. Tidal Prism, ACFCC and Old Alameda Creek, Alt C, Year 50, Summer
Figure 7-33. Tidal Prism, Coyote Creek, Alt C, Year 50, Summer
Figure 7-34. Tidal Prism, Alviso and Guadalupe Sloughs, Alt C, Year 50, Summer
Figure 7-35. Tidal Prism, Stevens Creek and, Mountain View Sloughs, Alt C, Year 50, Summer
Figure 7-36. Tidal Prism, Charleston and Ravenswood Sloughs, Alt C, Year 50, Summer
Figure 7-37. Salinity, San Mateo Bridge, Alt C, Year 50, Summer
Figure 7-38. Salinity, Dumbarton Bridge, Alt C, Year 50, Summer
Figure 7-39. Salinity, Channel Marker 17, Alt C, Year 50, Summer
Figure 7-40. Salinity at Spring HHW, Alt C, Year 50, Summer
Figure 7-41. Salinity at Spring LLW, Alt C, Year 50, Summer
Figure 7-42. Salinity, ACFCC Downstream, Alt C, Year 50, Summer
Figure 7-43. Salinity, ACFCC Upstream, Alt C, Year 50, Summer
Figure 7-44. Salinity, Old Alameda Creek Downstream, Alt C, Year 50, Summer
Figure 7-45. Salinity, Old Alameda Creek Upstream, Alt C, Year 50, Summer
Figure 7-46. Salinity at Spring HHW, Eden Landing, Alt C, Year 50, Summer
Figure 7-47. Salinity at Spring LLW, Eden Landing, Alt C, Year 50, Summer
Figure 7-48. Salinity, Coyote Creek Power Tower, Alt C, Year 50, Summer
Figure 7-49. Salinity, Coyote Creek Railroad Bridge, Alt C, Year 50, Summer
Figure 7-50. Salinity, Coyote Creek/Island Ponds, Year 50, Summer
Figure 7-51. Salinity, Coyote Creek Upstream, Year 50, Summer
Figure 7-52. Salinity, Mud Slough Downstream, Alt C, Year 50, Summer
Figure 7-53. Salinity, Mud Slough Upstream, Alt C, Year 50, Summer
Figure 7-54. Salinity, Alviso Slough Downstream, Alt C, Year 50, Summer
Figure 7-55. Salinity, Alviso Slough Upstream, Alt C, Year 50, Summer
Figure 7-56. Salinity, Guadalupe Slough Downstream, Alt C, Year 50, Summer
Figure 7-57. Salinity, Guadalupe Slough Upstream, Alt C, Year 50, Summer
Figure 7-58. Salinity, Moffett Channel, Alt C, Year 50, Summer
Figure 7-59. Salinity, Steven Creek Downstream, Alt C, Year 50, Summer
Figure 7-60. Salinity, Stevens Creek Upstream, Alt C, Year 50, Summer
Figure 7-61. Salinity, Mountain View Slough Downstream, Alt C, Year 50, Summer
Figure 7-62. Salinity, Mountain View Slough Upstream, Alt C, Year 50, Summer
Figure 7-63. Salinity, Charleston Slough Downstream, Alt C, Year 50, Summer
Figure 7-64. Salinity, Charleston Slough Upstream, Alt C, Year 50, Summer
Figure 7-65. Salinity at Spring HHW, Alt C, Alviso, Year 50, Summer
Figure 7-66. Salinity at Spring LLW, Alt C, Alviso, Year 50, Summer
Figure 7-67. Salinity, Ravenswood Slough Downstream, Ravenswood, Alt C, Year 50, Summer
Figure 7-68. Salinity, Ravenswood Slough Upstream, Ravenswood, Alt C, Year 50, Summer
Figure 7-69. Salinity at Spring HHW, Ravenswood, Alt C, Year 50, Summer
Figure 7-70. Salinity at Spring LLW, Ravenswood, Alt C, Year 50, Summer
Figure 7-71. Velocity, San Mateo Bridge, Alt C, Year 50, Summer
Figure 7-72. Velocity, Dumbarton Bridge, Alt C, Year 50, Summer
Figure 7-73. Velocity, Channel Marker 17, Alt C, Year 50, Summer
Figure 7-74. Velocity at Spring Flood, Alt C, Year 50, Summer
Figure 7-75. Velocity at Spring Ebb, Alt C, Year 50, Summer
Figure 7-76. Velocity, ACFCC Downstream, Alt C, Year 50, Summer
Figure 7-77. Velocity, Old Alameda Creek Downstream, Alt C, Year 50, Summer
Figure 7-78. Velocity at Spring Flood, Eden Landing, Alt C, Year 50, Summer
Figure 7-79. Velocity at Spring Ebb, Eden Landing, Alt C, Year 50, Summer
Figure 7-80. Velocity, Coyote Creek Power Tower, Alt C, Year 50, Summer
Figure 7-81. Velocity, Coyote Creek Railroad Bridge, Alt C, Year 50, Summer
Figure 7-82. Velocity, Guadalupe Slough Downstream, Alt C, Year 50, Summer
Figure 7-83. Velocity, Mud Slough Downstream, Alt C, Year 50, Summer
Figure 7-84. Velocity, Alviso Slough Downstream, Alt C, Year 50, Summer
Figure 7-85. Velocity, Guadalupe Slough Downstream, Alt C, Year 50, Summer
Figure 7-86. Velocity, Moffett Channel, Alt C, Year 50, Summer
Figure 7-87. Velocity, Steven Creek Downstream, Alt C, Year 50, Summer
Figure 7-88. Velocity, Mountain View Slough Downstream, Alt C, Year 50, Summer
Figure 7-89. Velocity, Charleston Slough Downstream, Alt C, Year 50, Summer
Figure 7-90. Velocity at Spring Flood, Alviso, Alt C, Year 50, Summer
Figure 7-91. Velocity at Spring Ebb, Alviso, Alt C, Year 50, Summer
Figure 7-92. Velocity, Ravenswood Slough Downstream, Alt C, Year 50, Summer
Figure 7-93. Velocity at Spring Flood, Ravenswood, Alt C, Year 50, Summer
Figure 7-94. Velocity at Spring Ebb, Ravenswood, Alt C, Year 50, Summer
Figure 7-95. South Bay Residual Circulation, Baseline, Summer
Figure 7-96. South Bay Residual Circulation, Alt C, Year 50, Summer
Figure 7-97. South Bay Residual Circulation, Difference, Year 50, Summer
Figure 7-98. Far South Bay Residual Circulation, Baseline, Summer
Figure 7-99. Far South Bay Residual Circulation, Alt C, Year 50, Summer
Figure 7-100. Far South Bay Residual Circulation, Difference, Summer
Figure 7-101. Tidal Bed Shear Stress, South Bay, Alt C, Year 50, Summer
Figure 7-102. Tidal Bed Shear Stress, Eden Landing, Alt C, Year 50, Summer
Figure 7-103. Tidal Bed Shear Stress, Alviso, Alt C, Year 50, Summer
Figure 7-104. Tidal Bed Shear Stress, Ravenswood, Alt C, Year 50, Summer
Figure 7-105. Total Bed Shear Stress, South Bay, Alt C, Year 50, Summer
Figure 7-106. Total Bed Shear Stress, Eden Landing, Alt C, Year 50, Summer
Figure 7-107. Total Bed Shear Stress, Alviso, Alt C, Year 50, Summer
Figure 7-108. Total Bed Shear Stress, Ravenswood, Alt C, Year 50, Summer
Figure 10-1. GSFB Summer 2001 Salinity, Pier 24/Bay Bridge
Figure 10-2. GSFB Summer 2001 Salinity, San Mateo Bridge
Figure 10-3. GSFB Summer 2001 Salinity Transect
Figure 10-4. GSFB Summer 2001 Salinity Transect
Figure 10-5. GSFB Summer 2001 Salinity Transect
Figure 10-6. GSFB Summer 2000 Salinity, Pier 24/Bay Bridge
Figure 10-7. GSFB Summer 2000 Salinity, San Mateo Bridge
Figure 10-8. GSFB Summer 2000 Salinity Transect
Figure 10-9. GSFB Summer 2000 Salinity Transect
Figure 10-10. GSFB Winter 2004 Salinity, San Mateo Bridge
Figure 10-11. GSFB Winter 2004 Salinity, Dumbarton Bridge
Figure 10-12. GSFB Winter 2004 Salinity, Channel Marker 17
Figure 10-13. GSFB Winter 2004 Salinity Transect
Figure 10-14. GSFB Winter 2004 Salinity Transect
Figure 10-15. South Bay Winter 2004 Salinity, San Mateo Bridge
Figure 10-16. South Bay Winter 2004 Salinity, Dumbarton
Figure 10-17. South Bay Winter 2004 Salinity, Channel Marker 17
Figure 10-18. South Bay Winter 2004 Salinity, Power Tower
Figure 10-19. South Bay Winter 2004 Salinity, Railroad Bridge
Figure 10-20. South Bay Winter 2004 Salinity, Alviso Slough
Figure 10-21. South Bay Winter 2004 Salinity, ACFCC
Figure 10-22. South Bay Winter 2004 Salinity Transect
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>One-dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>ACFCWCD</td>
<td>Alameda County Flood Control and Water Conservation District</td>
</tr>
<tr>
<td>ACFCC</td>
<td>Alameda Creek Flood Control Channel</td>
</tr>
<tr>
<td>ADF</td>
<td>Alternatives Development Framework</td>
</tr>
<tr>
<td>aka</td>
<td>also known as</td>
</tr>
<tr>
<td>BAAQMD</td>
<td>Bay Area Air Quality Management District</td>
</tr>
<tr>
<td>Bay</td>
<td>San Francisco Bay</td>
</tr>
<tr>
<td>CO-OPS</td>
<td>Center for Operational Oceanographic Products and Services</td>
</tr>
<tr>
<td>CEM</td>
<td>Coastal Engineering Manual</td>
</tr>
<tr>
<td>Central Bay</td>
<td>Central San Francisco Bay</td>
</tr>
<tr>
<td>CEQA</td>
<td>California Environmental Quality Act</td>
</tr>
<tr>
<td>Corps</td>
<td>U.S. Army Corps of Engineers</td>
</tr>
<tr>
<td>CIMIS</td>
<td>California Irrigation Management Information System</td>
</tr>
<tr>
<td>Delta</td>
<td>San Francisco Bay Delta</td>
</tr>
<tr>
<td>EBRPD</td>
<td>East Bay Regional Park District</td>
</tr>
<tr>
<td>EIR</td>
<td>Environmental Impact Record</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>far South Bay</td>
<td>portion of the South Bay south of Dumbarton Bridge</td>
</tr>
<tr>
<td>GSFB</td>
<td>Greater San Francisco Bay DELFT3D Model</td>
</tr>
<tr>
<td>HEC-RAS</td>
<td>Hydrologic Engineering System – River Analysis System</td>
</tr>
<tr>
<td>HHW</td>
<td>high high water</td>
</tr>
<tr>
<td>HLW</td>
<td>high low water</td>
</tr>
<tr>
<td>ISP</td>
<td>Initial Stewardship Plan</td>
</tr>
<tr>
<td>LiDAR</td>
<td>Light Detection and Ranging</td>
</tr>
<tr>
<td>LLW</td>
<td>low low water</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climate Data Center</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NHC</td>
<td>Northwest Hydraulic Consultants</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NOS</td>
<td>National Ocean Service</td>
</tr>
<tr>
<td>North Bay</td>
<td>North San Francisco Bay</td>
</tr>
<tr>
<td>MHHW</td>
<td>mean higher high water</td>
</tr>
<tr>
<td>MLLW</td>
<td>mean lower low water</td>
</tr>
<tr>
<td>PMT</td>
<td>Project Management Team</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per thousand</td>
</tr>
<tr>
<td>PWA</td>
<td>Philip Williams & Associates, Ltd.</td>
</tr>
<tr>
<td>RMP</td>
<td>Regional Monitoring Program</td>
</tr>
<tr>
<td>RWQCB</td>
<td>Regional Water Quality Control Board</td>
</tr>
<tr>
<td>SBSP</td>
<td>South Bay Salt Pond</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>SCVWD</td>
<td>Santa Clara Valley Water District</td>
</tr>
<tr>
<td>SFO Study</td>
<td>San Francisco International Airport Runway Reconfiguration Study</td>
</tr>
<tr>
<td>SFPORTS</td>
<td>San Francisco Physical Oceanographic Real-Time System</td>
</tr>
<tr>
<td>Shoreline Study</td>
<td>South San Francisco Bay Shoreline Study</td>
</tr>
<tr>
<td>South Bay</td>
<td>South San Francisco Bay</td>
</tr>
<tr>
<td>SPM</td>
<td>Shore Protection Manual</td>
</tr>
<tr>
<td>SWAN</td>
<td>Simulating Waves Nearshore</td>
</tr>
<tr>
<td>USGS</td>
<td>U.S. Geological Survey</td>
</tr>
<tr>
<td>WSE</td>
<td>water surface elevation</td>
</tr>
<tr>
<td>WWTP</td>
<td>Waste Water Treatment Plant</td>
</tr>
</tbody>
</table>
INTRODUCTION

This document presents the results of the programmatic hydrodynamic modeling for the South Bay Salt Pond (SBSP) Restoration Project. Restoring ponds to tidal inundation has the potential to significantly alter the dynamics of the South Bay through changes in hydrodynamic and geomorphic processes. In order to evaluate these potential changes, a two-dimensional (2D) DELFT3D hydrodynamic model of the South Bay has been calibrated and validated for use in evaluating alternatives and National Environmental Policy Act / California Environmental Quality Act (NEPA/CEQA) impact analysis. A detailed description of the model set-up, calibration and validation process, and input and boundary condition data can be found in PWA (2006a).

1.1 Modeling Objectives

The programmatic modeling for the SBSP Restoration Project is designed to support project planning and NEPA/CEQA environmental impact analyses. The objective of the modeling is to assess ecosystem-scale response to large-scale tidal restoration, and to bound the range of potential impacts and habitat conditions. The modeling focuses on understanding system-wide responses to restoring 90-percent of the 15,000-acre planning area to tidal action (Alternative C). The No Action Alternative (Alternative A) is also modeled, and both alternatives are compared to fall 2006 baseline conditions. Alternative B, which restores 50-percent of the planning area to tidal action, was not explicitly modeled as it represents an intermediate point between Alternatives A and C; therefore, the impacts associated with Alternative B can be qualitatively assessed based on the results of the Alternative A and C simulations. The modeled alternatives incorporate conceptual design features such as approximate levee breach locations and sizes in order to mobilize the potential tidal prism within the tidally-restored ponds, and, therefore exert the maximum impact on South Bay hydrodynamics.

The planning and modeling of the Phase 1 actions will be used to evaluate specific operations and management regimes as well as the layout of pond-specific design features such as breach locations and islands. The objective of this modeling will be to more clearly define both local and system-wide impacts associated with the restoration of individual ponds and small pond clusters prior to implementation. This document addresses only the programmatic modeling efforts. Phase 1 modeling and analyses, as appropriate, will be addressed separately.

1.2 Restoration Alternatives

The modeled scenarios are based on the alternatives presented in the Final Alternatives Report (PWA and others 2006). The alternatives represent potential “end states” at year 50, meaning they represent a best guess at the eventual landscape based on the desired habitat mix. It is fully anticipated that the landscape that will evolve over time through the implementation of phased project actions will not be exactly what is depicted by any of the end-state alternatives. Instead, the future landscape will be the result of modifications to the restoration plan over time within the context of the programmatic decision process and adaptive management to best achieve the Project Objectives. Thus the evaluation of the alternatives
for the Project by its very nature will not be as precise as if this were a project aimed at constructing one particular facility such as a building.

In summary, the alternatives are defined as:

- **Alternative A: No Action.** This is the most likely outcome in the absence of implementing a long-term restoration plan. Alternative A assumes that, over time, pond operations and management would become more limited. With continued levee subsidence, wave erosion and sea-level rise, the levees would be increasingly prone to failure. Measures would be used to slow deterioration of key flood protection levees as funding allows, and other levees would be allowed to erode, restoring tidal action to some ponds through uncontrolled breaching.

- **Alternative B: Managed Pond Emphasis (50:50 Tidal Habitat : Managed Ponds by area).** Alternative B emphasizes managed pond habitat and provides approximately 7,500 acres each of tidal marsh and managed pond habitat. Approximately 20 percent of the managed ponds (approximately 1,600 acres) would be reconfigured to significantly enhance foraging, roosting, and nesting opportunities for shorebirds, waterfowl, and other waterbirds. The remaining ponds would be managed for target bird species with minimal reconstruction and grading. A system of shoreline levees would be designed to provide coastal flood protection and minimize fluvial flood risks, and new recreation, education, and interpretive opportunities would be provided.

- **Alternative C: Tidal Habitat Emphasis (90:10 Tidal Habitat : Managed Ponds by area).** Alternative C emphasizes tidal restoration and provides approximately 13,400 acres of tidal marsh habitat and 1,600 acres of managed pond habitat. All managed ponds under Alternative C would be reconfigured to significantly enhance foraging, roosting, and nesting opportunities for shorebirds, waterfowl, and other waterbirds. As with Alternative B, a system of shoreline levees would be designed to provide coastal flood protection and minimize fluvial flood risks, and new recreation, education, and interpretive opportunities would be provided.

1.3 NEPA/CEQA Baseline

For the EIS/R, the baseline for evaluating the alternatives is assumed to be set at fall 2006 to allow consideration of recent Initial Stewardship Plan (ISP) actions and their effects on the ponds for certain topics (e.g., water quality and biological resources). In addition to the ISP, the Eden Landing Ecological Reserve will be considered part of the baseline. However, this baseline is set in the future (at the time of this writing), and ISP operations have continued to change since the first actions were implemented in 2004 (see California Department of Fish and Game 2005; U.S. Fish and Wildlife Service 2005; U.S. Fish and Wildlife Service 2006) in order to meet pond discharge requirements. Fall 2006 pond operations are likely to differ from both previous and current operations, and the exact management scheme is unknown. Based on this and other considerations, the modeling calibration and validation focused on the 2000 to 2004 period, or pre-ISP conditions. For restoration scenario simulations, summer 2001 and winter 2004 boundary and initial condition data (e.g., tides, winds, etc.) will be utilized. A complete description of the boundary and initial condition data is presented in PWA (2006a).
1.4 Report Organization

This report is divided into six major sections, describing the important aspects of the hydrodynamic modeling for NEPA/CEQA impact analysis for the SBSP Restoration Project:

- **Section 2. Modeling Context.** This section provides a brief review of the major assumptions in the programmatic modeling and provides a brief description of the modeling simulations under consideration.

- **Section 3. Restoration Scenario Model Set-up.** This section describes additional model set-up required for scenario modeling simulations.

- **Section 4. Alternative C, Year 0, Summer Conditions.** This section presents the results of the hydrodynamic modeling for Alternative C at year 0 under summer conditions, and provides a comparison with baseline conditions. The year 0 simulations provide a hypothetical “maximum impact” scenario assuming all tidally-restored ponds are restored at once.

- **Section 5. Alternative C, Year 0, Winter Conditions.** This section presents the results of the hydrodynamic modeling for Alternative C at year 0 under winter conditions, and provides a comparison with baseline conditions. The year 0 simulations provide a hypothetical “maximum impact” scenario assuming all tidally-restored ponds are restored at once.

- **Section 6. Alternative A, Year 50, Summer Conditions.** This section presents the results of the hydrodynamic modeling for Alternative A, the No Action Alternative, at year 50 under summer conditions, and provides a comparison with baseline conditions.

- **Section 7. Alternative C, Year 50, Summer Conditions.** This section presents the results of the hydrodynamic modeling for Alternative C at year 50 under summer conditions, and provides a comparison with baseline conditions.
2. MODELING CONTEXT

A challenge facing the SBSP Restoration Project is the overall timing of the project schedule. A major goal of the project is to select Phase 1 actions and usher them through final design so implementation can begin in 2008. In order to meet this schedule in a timely fashion, and stay within the Project budget, the analysis approach throughout the planning process is designed to match the level of analysis with the planning needs at each stage. The analyses presented herein were designed to evaluate the programmatic alternatives for the long-term restoration plan and guide the assessment of impacts in the EIS/R. The analyses presented herein were not designed to evaluate the Phase 1 actions; the analysis and modeling of the Phase 1 actions is presented in separate technical appendices to the EIS/R.

2.1 Model Development

DELFT3D was chosen as the primary hydrodynamic modeling tool for the SBSP Restoration Project. DELFT3D, developed by WL | Delft Hydraulics in coordination with Delft University, consists of an integrated set of modules that simulate hydrodynamic flow, scalar transport (e.g., salinity and temperature), and wave generation and propagation through integration with the SWAN wave model (Booij and others 1999; WL | Delft Hydraulics 2003). DELFT3D simulates a large number of physical processes, including wind shear, wave forces, tidal forces, density-driven flows, atmospheric pressure, evaporation, precipitation, flow through hydraulic structures, and drying and flooding of intertidal mudflats (WL | Delft Hydraulics 2003). A curvilinear flexible-mesh grid system is utilized, which allows some capacity to vary the grid resolution over the domain.

The modeling effort for the SBSP Restoration Project aims to capture the full hydrodynamic effects of the Sacramento-San Joaquin Delta-San Francisco Bay-Pacific Ocean system, while focusing on the impacts within the South Bay, defined as the region south of the San Bruno Shoal (from Coyote Point on the western shore to San Leandro Marina on the eastern shore). These two goals are not realistic through the use of a single DELFT3D model, since the grid resolution required to resolve features within the restoration area cannot practically be applied to the larger system. Consequently, a nested two model approach was developed; a larger, low-resolution model (the Greater San Francisco Bay Model, or GSFB Model) covers the entire system while a higher-resolution model covers the South Bay (the South Bay Model).

The primary purpose of the GSFB Model is to provide boundary condition data for the South Bay Model near the Oakland-Bay Bridge. The GSFB Model was originally developed by the U. S. Geological Survey (USGS) (Barnard and others in press) for examining flows through the Golden Gate, and was refined to complete the NEPA/CEQA impact analyses. The model includes much of the Bay-Delta system, extending as far upstream as Big Break on the San Joaquin branch and as far as Rio Vista on the Sacramento branch (Figure 2-1). The model also extends past the Golden Gate approximately 50 km into the Pacific Ocean, extending as far north as Point Reyes and as far south as Half Moon Bay. The grid cell resolutions vary throughout the domain, with higher resolutions used for areas of interest and areas with significant spatial information, and lower resolutions applied where such requirements are lessened. Near
the mouth of the Golden Gate and throughout much of the North Bay and Delta, characteristic grid cell sizes are 200 m (Figure 2-2). In the South Bay, and along the direct approach to the Golden Gate, characteristic sizes are 500 m.

The South Bay Model includes the portions of San Francisco Bay south of the Oakland-Bay Bridge and includes the entire South Bay and the three pond complexes: the Alviso pond complex located at the southernmost end of the far South Bay (south of Dumbarton Bridge), the Ravenswood pond complex located on the western side of the Dumbarton Bridge, and the Eden Landing pond complex located on the eastern shore just south of the San Mateo Bridge (Figure 2-3). The model grid also includes tidal sloughs in the South Bay including downstream portions of Coyote Creek, Alviso Slough, Mud Slough, Guadalupe Slough, and the Alameda Creek Flood Control Channel. The computational grid was developed using DELFT3D’s curvilinear flexible mesh grid system in order to allow for a gradual increase in resolution with increasing distance from the Bay Bridge. The grid was constructed using a resolution on the order 100 to 150 m at the Bay Bridge, and 15 to 20 m south of Calaveras Point (Figure 2-4). Details with respect to both the GSFB and the South Bay Models are documented in the Hydrodynamic Model Calibration Report (PWA 2006a), and a summary of the model calibration is presented in Appendix A.

2.2 Programmatic Modeling Simulations

The modeling strategy is based on performing six primary simulations, as presented in Table 2-1, focused on evaluating Alternatives A and C. These alternatives represent the “bookends” with respect to tidal restoration. At year 0, Alternative A represents baseline conditions with no tidal restoration occurring within the project area other than the Island Ponds (A19, A20 and A21) and the Eden Landing Ecological Reserve. In order to account for seasonal variations, baseline conditions were simulated under summer conditions (run 1) and winter conditions (run 2). These simulations will be used as the basis for evaluating potential impacts, as they approximate existing conditions and the NEPA/CEQA baseline (Section 1.3).

Alternative C, year 0, was simulated in order to assess the potential impacts to the South Bay of restoring 90 percent of the project area to tidal action. As with the baseline conditions simulations, Alternative C, year 0, was simulated under summer (run 3) and winter (run 4) conditions, and comparisons were made with the corresponding baseline simulation.

Alternative A and Alternative C were also simulated at year 50 (runs 5 and 6, respectively), representing potential future conditions. Under Alternative A, levee failures are assumed to have occurred over the 50-year horizon, resulting in approximately 35 percent of the project area reverting to tidal action in an unplanned manner (PWA and others 2006). This assumption is based on the professional judgment of landowners and project planners with respect to future levels of funding for land-management, the expected lifetime of existing levees and hydraulic structures, and other factors that are inherently difficult to estimate. Under both alternatives, the tidally-restored ponds are assumed to have accumulated sufficient sediment to raise pond bottom elevations to vegetation colonization elevations (PWA 2006b), and the tidal sloughs are assumed to have scoured and deepened as a result of the increased tidal prism.
Section 3 provides additional details relating to these assumptions. The year 50 simulations were performed under summer conditions only, and the model predictions are compared with the summer baseline simulation (run 1).

Alternative B, which restores 50 percent of the project area to tidal action, was not modeled. The short-term (year 0) impacts associated with Alternative B will be qualitatively assessed in the EIS/R as a midpoint between Alternatives A and C. The long-term (year 50) impacts to the South Bay associated with Alternative B may more closely resemble the long-term impacts of Alternative A, as Alternative A at year 50 assumes levee failures occur resulting in approximately 35 percent of the project area reverting to tidal action in an unplanned manner (PWA and others 2006).

Table 2-1. Hydrodynamic Model Runs

<table>
<thead>
<tr>
<th>Run</th>
<th>Alternative</th>
<th>Year</th>
<th>Season</th>
<th>Description of Modeling Simulation</th>
<th>Compared with Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baseline</td>
<td>0</td>
<td>Summer</td>
<td>Existing conditions – no restoration</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Baseline</td>
<td>0</td>
<td>Winter</td>
<td>Existing conditions – no restoration</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Alt C – Tidal Habitat Emphasis</td>
<td>0</td>
<td>Summer</td>
<td>Conditions immediately after restoring 90 percent of the ponds to tidal action</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Alt C – Tidal Habitat Emphasis</td>
<td>0</td>
<td>Winter</td>
<td>Conditions immediately after restoring 90 percent of the ponds to tidal action</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Alt A – No Action</td>
<td>50</td>
<td>Summer</td>
<td>Future conditions – no planned restoration, levee failures and unplanned tidal conversions occur</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Alt C – Tidal Habitat Emphasis</td>
<td>50</td>
<td>Summer</td>
<td>Future conditions after restoring 90 percent of the ponds to tidal action</td>
<td>1</td>
</tr>
</tbody>
</table>

2.3 Major Assumptions and Uncertainties

There are several assumptions and uncertainties associated with the programmatic-level modeling, including:

- No project phasing, all ponds restored at year 0
- Programmatic level of detail with respect to design features
- Managed ponds discharges not simulated
- No direct modeling of sediment transport and/or morphologic change
- Limited grid resolution in some areas
- Year 50 bathymetric change estimates from separate geomorphic assessment
- Two-dimensional modeling approach
2.3.1 Phasing

The simulations assume that all ponds specified for tidal restoration under a given alternative are restored at the same time (year 0). This is considered a conservative, or “hypothetical”, assumption since it provides the maximum system-wide response and the largest hydrodynamic changes. In reality, restoration will be phased over many years, thereby reducing the magnitude of the project’s impacts. Since the selection and phasing of future actions for implementation will be driven largely by the Monitoring and Adaptive Management Plan and other considerations that are not known at this time, a modeling approach based around the eventual phasing plan and timeline is not possible.

2.3.2 Level of Detail

An additional programmatic-level assumption concerns the level of detail included in the model simulations. As the alternatives will be not specified at a project level of detail, assumptions regarding levee breach locations and sizes will be made throughout the project area so that restored ponds can be hydraulically connected to the South Bay. For most ponds, levee breaches will be located near historic channel networks in order to reconnect historic drainage paths. For ponds without historic channel networks, or with channel networks that cannot logically be reconnected due to extensive physical changes in the nearby systems (e.g., some ponds in the Eden Landing Complex), levee breaches will be located based on professional judgment and the locations may be refined based on modeling results. Breaches will likely be oversized in order to mobilize the potential tidal prism within the restored ponds. Future project-level modeling may be used to assess the importance of design features (e.g., starter channels, ditch blocks, wave breaks) within a particular pond in order to evaluate pond circulation, sedimentation and residence times. These features will not be considered at the programmatic level.

2.3.3 Managed Pond Discharges

The managed ponds are not included in the programmatic-level tidal restoration simulations. The intent of the programmatic modeling is to bracket the range of potential impacts, focusing on characterizing impacts on the South Bay ecosystem scale. Based on a review of the modeling completed for the ISP (Gross and Schaal & Wheeler 2003b), full implementation of the ISP resulted in salinity differences on the order of 1 – 4 ppt in tidal sloughs, with little to no impact on Bay-wide salinity. Partial implementation (ensuing from 50 and 90 percent of the ponds being restored to tidal action), will likely result in smaller salinity differences.

Although the impact to tidal slough salinity from managed pond discharges is measurable, the addition of pond discharges is expected to make less of a difference in slough response than other processes not included in the analyses. For example, phasing is not included because it is an unknown – future phasing for implementation will likely be defined through planning and adaptive management decisions throughout the life of the project. The system response to the broad assumption that all ponds are restored at year 0 will likely dwarf the slough response to managed pond operations. Additional modeling in future phases for implementation may require the inclusion of managed ponds to appropriately characterize slough response at the project-level.
2.3.4 Sediment Transport and Geomorphic Modeling

Sediment transport and geomorphic modeling was not performed at the programmatic level for NEPA/CEQA impact analyses. The development of a sediment transport and geomorphic model of the South Bay system would be an extensive effort requiring additional data collection efforts and a significant amount of resources and time. The effort involved in setting up such a model is not practical for impact analyses at the programmatic level, particularly with respect to the gross assumptions for this level of analysis. However, such a model would be useful for informing future restoration phases and adaptive management decisions, therefore it is assumed that the development of a sediment transport and geomorphic model will be undertaken as part of the longer-term modeling efforts. The Project’s National Science Panel recommended that the Project initiate an RFP-based effort for the development of such a suite of models.

Although sediment transport and geomorphic modeling will not be performed, potential impacts to sediment erosion and deposition patterns will be inferred based on comparisons of the changes in total bed shear stress as result of tidal restoration. Potential changes to the tidal sloughs in response to the increased tidal prism will be estimated based on hydraulic geometry relationships (Williams and others 2002), as discussed in PWA (2005). These methods have been used successfully for previous restoration project EIS/R documents (Jones & Stokes 2004a; Jones & Stokes 2004b; U.S. Fish and Wildlife Service and others 2004).

2.3.5 Grid Resolution

One of the largest uncertainties affecting the model results is the accuracy and resolution of the available bathymetry and the grid resolution used to resolve this bathymetry. To the extent possible, the models have made use of the most recent and best available bathymetric data which minimizes the uncertainty introduced by bathymetry. However, when the bathymetric data is sampled onto the model grids, additional filtering of bathymetric data occurs which limits the capacity of the model to resolve small-scale bathymetric features. To help reduce this effect in the South Bay channels, sounding data collected by Sea Surveyor in 2005 was used to develop the grid bathymetry in areas where it was available.

The grid resolution of the South Bay Model was selected to be as fine as possible, subject to the computational resources currently available. The grid resolution varies over the domain and in the primary areas of interest, as shown on Figure 2-4 and discussed in Section 2.1. The Eden Landing and Ravenswood pond complexes are modeled with a grid resolution on the order of 40 to 80 m. This grid resolution does not allow for adequate resolution of the tidal sloughs, which for the most part have channel widths narrower than 40 m. Ravenswood Slough in the Ravenswood pond complex is approximately 25 m wide and is represented in the model with a channel width on the order of 80 m. This overestimation of the channel width will affect the accuracy of the modeled water levels and salinity in Ravenswood Slough, and will lead to a large overestimate of the modeled slough tidal prism. Old Alameda Creek in the Eden Landing pond complex, which consists of two narrow channels separated by a mud bar, is also represented in the model as a single channel approximately 80 m wide and therefore the model results will contain similar inaccuracies in this creek.
The Alviso pond complex is modeled with a grid resolution on the order of 15 to 25 m; therefore the tidal sloughs within this complex are represented more accurately than those in the Eden Landing and Ravenswood pond complexes. However, due to the alignment of the tidal sloughs with the model grid, some sloughs are still modeled with widths that are nearly double their actual, physical widths (e.g., Charleston Slough, Mountain View Slough and Stevens Creek). The model results associated with these tidal sloughs will therefore contain greater inaccuracies than those sloughs which are better represented in the model (e.g., Coyote Creek, Alviso Slough, and Guadalupe Slough). However, even the use of 15- to 20-m grid resolution limits the capacity of the model to accurately resolve the bathymetry in the subtidal channel and tidal sloughs; therefore, considerable uncertainty exists in these areas. The use of finer grid resolution for project-level modeling would allow for more grid resolution across slough channels and could help reduce these uncertainties, but the capacity of the model would still be limited by the resolution of the available bathymetric data.

The Alviso pond complex was modeled at a greater level of detail because it represents approximately 80 percent of the total potential tidal prism added to the Bay by the tidally-restored ponds under Alternative C due to the larger pond area and the more subsided nature of the ponds. In addition, the surface area of the Alviso pond complex is similar to that of the far South Bay; therefore, restoration in the Alviso pond complex has the potential to appreciably alter the near-field hydrodynamics. Although the Eden Landing and Ravenswood pond complexes are modeled at a lesser level of detail, the effect of tidal restoration within these complexes on Bay hydrodynamics is still well represented.

2.3.6 Two-dimensional Model Approach

Both the GSFB and South Bay Model simulations utilize a 2D depth-averaged approximation. The use of 2D simulations significantly reduces the computational time required for the model simulations but also introduces additional model uncertainty both in the hydrodynamic and the salinity predictions. Under summer conditions in the South Bay, little stratification is present in the main channel (Cheng and others 1993). However, in the far South Bay tidal sloughs stratification exists and flows have a highly three-dimensional structure even during low freshwater inflows. The effects of stratification on hydrodynamics and salinity transport, and therefore important tidal circulation mechanisms, are not represented in the 2D simulations. Near-field salinity mixing which occurs near pond breaches can not be resolved in the model because the model can’t resolve processes that occur on a scale smaller than a single grid cell. Instead, pond discharges will be mixed uniformly into a model cell over both the cell area and the total water depth, which can lead to a significant over estimation of dilution of near-field salinity gradients. Additionally, 2D modeling requires calibration of 2D dispersion coefficients to approximate transport due to 3D mechanisms. While these coefficients can be calibrated for existing conditions, they are not necessarily valid for restored conditions. Thus, the use of 2D simulations introduces significant uncertainty to model predictions in areas where 3D processes are important.

2.3.7 Long-term Bathymetric Change

The model simulations of long-term, year 50, conditions rely on bathymetric change estimates documented in the South Bay Geomorphic Assessment (SBGA, PWA 2006b). The SBGA provides an overview of the potential magnitude of regional geomorphic changes in the South Bay 50 years into the
future for the three alternatives, including gains and losses in mudflat and fringing marsh. In essence, the SBGA is a first approximation of potential habitat change at a very coarse, regional scale. The SBGA includes analyses of historical bathymetric change, and draws on data and analyses by the USGS (Foxgrover and others 2004; Jaffe and Foxgrover 2006a; Jaffe and Foxgrover 2006b; Jaffe and Fregoso in progress), and sediment budget calculations. There are considerable uncertainties in this assessment relating to: the sediment budget components, sediment dynamics and the major sediment transport pathways, the morphologic response to sediment surpluses and deficits, and future rates of sea-level rise. There is, therefore, considerable uncertainty inherent in the predictions of long-term geomorphic change in response to the alternatives.

Although it is acknowledged that considerable uncertainty is associated with the long-term bathymetric change estimates, it is also recognized that developing long-term morphologic predictions is a relatively new applied science (Wilcock and Iverson 2003), and based on the available information, a more complex approach may not necessarily yield more certain results as it is inherently difficult to predict the future. However, since the year 50 modeling simulations are based on an analysis which contains considerable uncertainty, it should be noted that the same considerable uncertainty, if not greater uncertainty, is therefore attached to the year 50 modeling results. The year 50 modeling results represent an estimate of potential future conditions, based on the best available information, in order to evaluate the potential long-term changes in Bay hydrodynamics as a result of the SBSP Restoration Project.
Notes:
This figure shows the bathymetry used by the Greater San Francisco Bay Model

Greater San Francisco Bay Model Extent and Bathymetry
South Bay Model Extent and Bathymetry

Notes:
This figure shows the bathymetry used by the South San Francisco Bay model.
This figure shows the bathymetry used by the South San Francisco Bay model.
Notes:
This figure shows the horizontal grid resolution of the South San Francisco Bay model.
3. RESTORATION SCENARIO MODEL SET-UP

This section describes the model-set up and boundary and initial condition data required for the restoration scenario simulations. The model set-up described is in addition to the model set-up presented in the Modeling Methods and Strategy Report (PWA 2005) and the Hydrodynamic Modeling Calibration Report (PWA 2006a).

3.1 Baseline Conditions

Baseline conditions in the model are assumed to represent planned ISP operations as of fall 2006 in accordance with the NEPA/CEQA baseline (Section 1.3). The Island Ponds (A19, 20 and 21) in the Alviso pond complex and the Eden Landing Ecological Reserve in the Eden Landing pond complex represent the only ponds within the SBSP Restoration Project Area experiencing tidal inundation; the remaining ponds are assumed to continue to operate as managed ponds and are not included in the model simulation. Figure 3-1 through Figure 3-3 depict baseline conditions at each pond complex, including the intended management of the managed ponds. The management of the ponds may change prior to fall 2006 under the direction of the landowners in order to meet habitat goals and Regional Water Quality Control Board (RWQCB) discharge requirements; however, any management changes will be confined to managed pond operations and are not expected to affect the extent of tidal restoration. A full discussion of baseline South Bay hydrodynamics is presented in the Hydrodynamics and Sediment Dynamics Existing Conditions Report (PWA and others 2005).

3.1.1 Island Ponds

The Island Ponds (Ponds A19, A20 and A21) in the Alviso pond complex were breached in March 2006. The restoration design was completed by the Santa Clara Valley Water District (U.S. Fish and Wildlife Service and Santa Clara Valley Water District 2006) and includes two breaches to Pond A19, one breach to Pond A20, and two breaches to Pond A21. All breaches are located on the south side of the ponds and connect to Coyote Creek with a new channel through the outboard marsh. The actual breaches are 12-14 m wide. The sills of the breaches and the connector channels were graded to an elevation of 0.82 m NAVD88, approximately one meter above MLLW.

The Island Ponds restoration was included in the baseline simulations by connecting the ponds to Coyote Creek with a small channel one grid cell wide at approximately the actual breach locations (Figure 3-4). The model bathymetry was altered at the breach and along the connector channel to reflect the specified grading in the restoration design of 0.82 m NAVD88. Grid resolution in this region is approximately 20 m; therefore the modeled breach widths are larger than the actual breach dimensions, therefore the modeled exchange into the ponds should represent an upper bound on the actual exchange.

3.1.2 Eden Landing Ecological Reserve

The Eden Landing Ecological Reserve in the Eden Landing pond complex is located in the northeast corner of the complex, as shown on Figure 3-1. The design of this project was completed by Kamman
Hydrology and Engineering under the oversight of the East Bay Regional Park District (EBRPD). The project area originally consisted of fifteen salt ponds, and the restoration plan involved breaching several of the internal levees and excavating historic channels, thereby creating two distinct wetlands (Kamman Hydrology and Engineering 2004). These wetlands, referred to as the North and South wetlands, connect to the South Bay via Mount Eden Creek and North Creek, a spur off of Old Alameda Creek. These connector creeks were both dredged, and the levees on Mount Eden Creek were set back to enhance conveyance between the South Bay and the restored wetlands.

The model bathymetry was altered to reflect this restoration project, as shown in Figure 3-5. The dredged creeks and excavated historic channels were represented in the model as a series of contiguous cells. The bottom elevations within the restored wetlands and the channels match the design drawings for the restoration plan (Kamman Hydrology and Engineering 2004). The elevations range from 0.52 m NAVD88 at the mouth of Mount Eden Creek to 0.82 m NAVD88 within the North wetlands and from 0.21 m NAVD88 at the mouth of North Creek to 0.82 m NAVD88 within the South wetlands. As with the Island Pond breaches, the breach and channel widths within the Eden Landing Ecological Reserve are limited by the grid cell resolution in this region, therefore they are larger than actual dimensions.

3.1.3 Boundary and Initial Conditions

Boundary conditions for the baseline simulations utilized observations from the time period of May-June 2001 for summer conditions, as described for the 2001 model calibration period (PWA 2006a) and February-March 2004 for winter conditions, as described for the 2004 model validation period (PWA 2006a). Freshwater inflows are specified for the tidal sloughs, creeks and the waste-water treatment plants (WWTP). Temporally-varying but spatially-uniform wind stresses and evaporation rates were also applied to the water surface. Table 3-1 lists the data sources for the input and boundary condition data, with “GSFB” noted for data required only for the GSFB Model simulations, and “Both” noted for data required for the GSFB and South Bay Model simulations. Additional details with respect to the input and boundary condition data are described in the PWA (2006a).

At the open boundary of the South Bay Model, spatially- and temporally-varying water surface elevations and salinity introduced tidal action into the model domain. These boundary conditions were derived from the GSFB Model, as described by PWA (2006a), and are presented in Figure 3-6 for the summer period. Initial conditions were derived from the GSFB Model simulations (PWA 2006a). Water level, velocity, and salinity conditions from the GSFB Model simulations were extrapolated over the South Bay model domain to provide initial conditions for the baseline simulations.

The baseline simulations assume the majority of the ponds within the SBSP Restoration Project Area are operated as managed ponds, and are therefore not included in the model, as discussed in Section 2.3.3. The existing restoration areas, the Island Ponds (A19, A20 and A21) in the Alviso pond complex, and the Eden Landing Ecological Reserve in the Eden Landing pond complex are included in the simulations. However, the restorations areas are not included in the GSFB Model; therefore the initial conditions required specification. The model spin-up period was chosen to begin at HHW, therefore initial velocities within the restorations areas were set to zero. Initial water levels and salinities were specified based on the
water levels and salinities in the outboard slough channels at the start of the simulations. The model was spun up for two weeks, removing any initial effects associated with the hydrodynamics. Salinities typically require longer spin-up periods; however, due to the small volume of the restoration areas, the simulation appears to represent equilibrium conditions by the end of the spin-up period. Although equilibrium is approached within the tidal sloughs due to their relatively short residence times, the South Bay could require significantly longer spin-up times (on the order of several months to one year) to remove the effect of the initial salinity conditions. Due to the relatively long run times required, a spin-up time of this length was not included in the model simulations. However, under baseline simulations, the initial salinity condition within the ponds does not contribute to a significant freshening of the South Bay due to the relatively limited volume of water contained within the two restoration areas.

The initial salinity condition within the ponds is based on the assumption that ponds would be operated as muted tidal systems prior to breaching, and the restoration areas would be breached in the spring when pond salinities are at their lowest, thereby limiting the adverse effects associated with high salinity releases in the tidal sloughs and the South Bay. The muted tidal assumption is consistent with current ISP pond operations. In the spring, salinities within the tidal sloughs and ponds would be at their lowest due to the influence of winter and spring freshwater tributary inflows, and the influence of high summer evaporation rates on salinity could be neglected. However, this assumption could underestimate the initial salinity conditions if breaching were to occur in summer or fall when the effect of evaporation cannot be neglected, and it does not account for the potential increase in slough and pond salinities due to muted tidal operations of the ponds.
Table 3-1. Input and Boundary Condition Data Sources

<table>
<thead>
<tr>
<th>Model</th>
<th>Location</th>
<th>Dates</th>
<th>Agency or Organization</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal Boundary Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSFB</td>
<td>Point Reyes (9415020)</td>
<td>1/1/1996 – present</td>
<td>NOAA/NOS</td>
<td>http://tidesandcurrents.noaa.gov/</td>
</tr>
<tr>
<td>GSFB</td>
<td>San Francisco (9414290)</td>
<td>1/1/1901 – present</td>
<td>NOAA/NOS</td>
<td>http://tidesandcurrents.noaa.gov/</td>
</tr>
<tr>
<td>Salinity Boundary Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSFB</td>
<td>Oceanic Salinity</td>
<td>Various</td>
<td>PRBO</td>
<td>http://shorestation.ucsd.edu/</td>
</tr>
<tr>
<td>Salinity Initial Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSFB</td>
<td>San Francisco Bay Salinity Transects</td>
<td>4/1969 – 5/2005</td>
<td>USGS</td>
<td>http://sfbay.wr.usgs.gov/access/wqdata Cruise data collected approximately monthly at discrete points along the main channel</td>
</tr>
<tr>
<td>Fluvial Flows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>Coyote Creek @ Highway 237</td>
<td>1/1/1999 – 9/30/2004</td>
<td>USGS</td>
<td>http://waterdata.usgs.gov/</td>
</tr>
<tr>
<td>Both</td>
<td>Guadalupe River @ San Jose</td>
<td>10/1/1929 – 4/30/2000</td>
<td>USGS</td>
<td>http://waterdata.usgs.gov/</td>
</tr>
<tr>
<td>Both</td>
<td>Alameda Creek Flood Control Channel @ Union City</td>
<td>10/1/1958 – 9/30/2004</td>
<td>USGS</td>
<td>http://waterdata.usgs.gov/</td>
</tr>
<tr>
<td>Both</td>
<td>San Francisco Creek @ Stanford Univ.</td>
<td>10/1/1930 – 9/30/2004</td>
<td>USGS</td>
<td>http://waterdata.usgs.gov/</td>
</tr>
<tr>
<td>Both</td>
<td>Matadero Creek @ Palo Alto</td>
<td>10/1/1952 – 9/30/2004</td>
<td>USGS</td>
<td>http://waterdata.usgs.gov/</td>
</tr>
<tr>
<td>Both</td>
<td>Saratoga Creek @ Saratoga</td>
<td>10/1/1933 – 9/30/2004</td>
<td>USGS</td>
<td>http://waterdata.usgs.gov/</td>
</tr>
<tr>
<td>Both</td>
<td>Upper Penitencia Creek @ Piedmont Rd</td>
<td>10/1/1942 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>Calabazas Creek @ Wilcox School</td>
<td>10/1/1945 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>Permanente Creek @ Berry Ave</td>
<td>10/1/1944 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>Hale Creek @ Magdalena Road</td>
<td>10/1/1945 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>Stevens Creek @ Highway 85</td>
<td>10/1/1942 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>Los Gatos @ Lincoln Ave</td>
<td>11/2/1955 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>Coyote Creek @ Edenvale</td>
<td>10/1/1963 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Model</td>
<td>Location</td>
<td>Dates</td>
<td>Agency or Organization</td>
<td>Source</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Both</td>
<td>Thompson Creek @ Quimby Rd</td>
<td>10/1/1980 – present</td>
<td>SCVWD</td>
<td>http://www.valleywater.org/</td>
</tr>
<tr>
<td>Both</td>
<td>San Jose Waste Water Treatment Plant Outfall</td>
<td>1/1/1999 – 6/30/2005</td>
<td>City of San Jose</td>
<td>City of San Jose</td>
</tr>
<tr>
<td>Both</td>
<td>Sunnyvale Waste Water Treatment Plant Outfall</td>
<td>1/1/1999 – 6/30/2005</td>
<td>City of Sunnyvale</td>
<td>City of Sunnyvale</td>
</tr>
<tr>
<td>Both</td>
<td>Palo Alto Waste Water Treatment Plant Outfall</td>
<td>1/1/1999 – 5/31/2005</td>
<td>City of Palo Alto</td>
<td>City of Palo Alto</td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaporation and Precipitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>Union City</td>
<td>2/5/2001 – present</td>
<td>CIMIS</td>
<td>http://www.cimis.water.ca.gov/</td>
</tr>
</tbody>
</table>
3.1.4 Potential Tidal Prism

As part of the ISP, the Island Ponds in the Alviso pond complex and the Eden Landing Ecological Reserve in the Eden Landing pond complex were opened to tidal action and have been included in the baseline simulations. The potential tidal prism within these regions – the volume of water that can be mobilized by the tides – can be estimated as the surface area of the project area multiplied by the difference in elevation between the pond bottoms and MHHW. Table 3-2 presents the estimated potential tidal prism for these two project areas. Each region adds just over one million cubic meters of potential tidal prism to the South Bay, which is approximately two orders of magnitude less than the tidal prism at the San Mateo Bridge.

Table 3-2. Potential Tidal Prism of ISP Project Areas

<table>
<thead>
<tr>
<th>SBSP ISP project areas</th>
<th>Potential tidal prism (m3, millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Island Ponds</td>
<td>1.3</td>
</tr>
<tr>
<td>EBRPD wetlands</td>
<td>1.4</td>
</tr>
</tbody>
</table>

3.2 Alternative C – Tidal Habitat Emphasis, Year 0

Alternative C emphasizes tidal restoration and provides an approximately 90:10 ratio by area of tidal habitat to managed ponds (Figure 3-7 through Figure 3-9). At year 0, all of the ponds designated as tidal habitat will be hydraulically connected to the South Bay via over-sized breaches to the tidal sloughs in order to mobilize the potential tidal prism. Based on this assumption, the ponds will drain and fill with the tides, and dependent on their pond bottom elevations will either resemble open water areas (deep ponds) or intertidal mudflats (shallow ponds).

At year 0, no pond sedimentation or vegetation establishment is assumed to have occurred. In addition, the connecting slough channels (Old Alameda Creek, the Alameda Creek Flood Control Channel, Coyote Creek, Alviso Slough, Guadalupe Slough, Stevens Creek and Mountain View Slough) are assumed to maintain their existing channel geometry – no widening or deepening has occurred in response to the increased tidal prism. As with the baseline simulations, the managed ponds are not included in the model simulation.

3.2.1 Breach Sizes and Locations

In order to include the tidally-restored ponds in the model simulation, breach locations were selected and sized. This included selecting external breaches between the ponds and tidal sloughs, as well as internal breaches to facilitate pond drainage. Breach locations were selected by reviewing the historic channel networks and drainage areas, aerial photos of existing remnant antecedent channels, and the final alternatives as shown in PWA and others (2006). Wherever possible, breaches were located near the antecedent channels in order to promote reoccupation of the historic drainage paths. Particular care was taken to locate breaches as far upstream as possible on the tidal sloughs in order to facilitate channel scour and provide maximum flood protection benefits. A few breaches were located on the bayward side of the ponds in order to increase tidal exchange within the ponds and minimize tidal damping. Figure 3-15 through Figure 3-17 display the modeled breach locations for each pond complex. It is assumed that the
outboard levees will largely remain intact in order to provide wind-wave protection to the ponds until sufficient sediment accretes so that vegetation can establish. No levee lowering or levee removal was included in the model.

The minimum breach sizes were determined two ways: by relating hydraulic geometry to drainage area and by relating hydraulic geometry to the potential tidal prism. As a rule of thumb, external breaches were assumed to be at least 40 m wide, and internal breaches were assumed to be at least 20 m wide.

Implementing breaches of this size in the model was constrained by the grid resolution because breaches must span a minimum of one grid cell. In the Alviso pond complex, where the grid resolution is 15 to 20 m square, internal breaches one cell wide and external breaches two cells wide closely approximate the assumed breach sizes of 20 m and 40 m, respectively. In the Eden Landing and Ravenswood pond complexes, where the grid resolution is coarser, the modeled breaches are larger than the assumed breach sizes. The actual modeled dimensions depend upon the specific cell dimensions of a particular pond and the orientation of the grid cells. Generally, the maximum internal breach size in the Ravenswood and Eden Landing pond complexes is 40 m and the maximum external size is 80 m. The model bathymetry was also modified to include a pilot channel the same width as the breach. For external breaches, the pilot channel extends from the breach to the nearest slough channel and the depth is equal to the slough channel depth. For internal breaches, the channel is only a few cells long and the depth is set based on the pond bed elevation of the deeper pond.

Over sizing breaches is consistent with the principle that the breach width should not limit the exchange of tidal prism. Rather, from the programmatic perspective, the modeling should capture the impact of the breaches on mobilizing a conservatively large amount of tidal prism. Regardless of breach size, at year 0, the full mobilized tidal prism is potentially limited more by the conveyance capacity in the tidal sloughs. The sloughs’ hydraulic geometry at year 0 has been set by the existing, much lower, tidal exchange and channel scour in response to the increased tidal prism has not been included. The slough channels will likely scour over time; however, the timing of the slough scour is unknown.

3.2.2 Boundary and Initial Conditions

Boundary and initial conditions for Alternative C are largely identical to those for the baseline simulations, as described in Section 3.1.3 and shown in Figure 3-6; however, under Alternative C, the area of tidally-restored ponds is significantly greater. Consequently, the impact from the initial salinity condition within the ponds on the South Bay is more apparent, and salinity conditions within the South Bay do not reach equilibrium within the analysis period. For this simulation, the hydrodynamic model was run for an additional two months in order to more quantitatively discuss the long-term equilibrium conditions within the tidal sloughs and the South Bay.

Ideally, the GSFB Model would be updated accordingly for each simulation in Table 2 1 in order to derive an appropriate boundary condition for the South Bay Model. For example, the simulation of Alternative C at year 0 with 90 percent of the ponds opened to tidal action would require modifying both the GSFB and South Bay Models to include the tidally-restored ponds. The boundary condition for the
South Bay Model simulation would then be derived from the GSFB Model simulation of Alternative C year 0 conditions. Simulations of Alternative A and C under year 50 conditions would also require modifications to both models. However, the grid resolution of the GSFB Model is on the order of 300 – 500 m in the South Bay, which is not adequate for performing the necessary model modifications for the alternative simulations.

In order to simplify the analysis, the GSFB Model was not modified to match the bathymetric changes included in the South Bay Model simulations. Instead, the same open boundary condition was applied for all South Bay Model summer simulations, and the open boundary condition for the winter South Bay Model simulation was derived from an unaltered GSFB Model simulation of winter conditions. In order to test the sensitivity of the model results to this simplification, the GSFB Model was modified to crudely represent the tidally-restored ponds in the Alternative C year 0 simulation by adding cells to the model domain in the vicinity of the three pond complexes to roughly approximate the amount of restored tidal prism contained within the tidally-restored ponds. The South Bay Model was then run for both the original GSFB Model boundary and the modified “GASFB Model Alternative C” boundary condition and the results compared. Figure 3-10 displays the station locations used in the open boundary condition sensitivity analysis.

Figure 3-11 displays the South Bay Model’s water level open boundary condition near the Oakland-Bay Bridge extracted from the GSFB Model under baseline and Alternative C conditions. In general, the water levels are similar under both scenarios. With the GSFB Model Alternative C implementation, tidal damping is observed at the Oakland-Bay Bridge, with the most marked difference observed at higher low water, and a negligible difference observed at both daily high water marks. Figure 3-12 displays water levels at two stations in the Bay from the GSFB Model under baseline and Alternative C conditions, one station is located just north of the Oakland-Bay Bridge and one station is located at Channel Marker 17 in the far South Bay. At the northern station, tidal damping is similar to that observed at the Oakland-Bay Bridge (Figure 3-12a). At the southern station, the tidal damping increases, with lower water levels observed at both high water marks, and high water levels observed at both low water marks, with the largest differences at observed at low water (Figure 3-12b). Therefore, implementation of Alternative C in the GSFB Model, albeit in a simplified manner, results in tidal damping in the Bay, with increasing tidal damping southwards into the South Bay.

Figure 3-13a compares the modeled flux of water at the Oakland-Bay Bridge boundary from GSFB Model under baseline and Alternative C conditions. Under Alternative C conditions, the modeled flux decreases. This result is somewhat counter-intuitive. Under Alternative C, approximately 13,400 acres of salt ponds are restored to tidal action, and thus the volume of the South Bay increases. However, this increase in volume is not accompanied by a corresponding increase in tidal prism. Rather, the restoration’s effect on the tidal range roughly cancels out the increase in volume. Figure 3-13b compares the modeled flux of water at the Oakland-Bay Bridge boundary from the South Bay Model under baseline conditions and Alternative C conditions – modeled using both the baseline and Alternative C water levels from the GSFB Model. The modeled flux is similar for all three simulations, with the greatest differences observed at higher low water.
Figure 3-14 compares the modeled water levels at the San Mateo Bridge, the Dumbarton Bridge, and Channel Marker 17 in the far South Bay from the South Bay Model under baseline and Alternative C conditions, with Alternative C conditions represented using both the baseline and Alternative C water level boundary condition derived from the GSFB Model. The comparisons show that the tidal propagation in the South Bay under both Alternative C simulations is similar, with increasing tidal damping in the far South Bay. The largest differences observed between the two Alternative C simulations are at higher low water at both bridge stations, and the differences at LLW and both high water marks are negligible.

Based on this sensitivity analysis of the water level open boundary condition derived from the GSFB Model, the water levels from the baseline GSFB Model simulation were applied to all South Bay Model simulations for alternatives analysis. However, it should be noted that use of the baseline boundary condition may lead to an underestimation of the tidal damping in the South Bay as a result of tidal restoration, as is seen on Figure 3-14. It should also be noted that the differences observed in this analysis for Alternative C at year 0 (assuming all ponds are opened and restored at once) are larger than would be expected under the year 50 simulations. By year 50, pond sedimentation and salt marsh establishment within the ponds is assumed to occur, reducing the added volume of the ponds to approximately 20 of the year 0 volume.

3.2.3 Potential Tidal Prism

Alternative C represents a significant change to the existing tidal prism within the South Bay, as shown in Table 3-3. The total potential tidal prism, as estimated from the pond volumes as described in Section 3.1.4, will add twenty times more potential tidal prism than added under baseline conditions. Nearly 80 percent of the potential tidal prism is contained within the Alviso pond complex, as is expected due to this pond complex’s larger area, more subsided pond bottom elevations, and greater tidal range when compared with the Eden Landing and Ravenswood pond complexes. The total potential tidal prism assumes full hydraulic connectivity between the ponds and the Bay. The actual modeled tidal prism will likely be less as the ponds will be connected to the Bay through a series of external and internal breaches which will limit the hydraulic connectivity.

<table>
<thead>
<tr>
<th>SBSP Alternative C project areas</th>
<th>Potential tidal prism (m3, millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eden Landing complex</td>
<td>7.1</td>
</tr>
<tr>
<td>Ravenswood complex</td>
<td>3.5</td>
</tr>
<tr>
<td>Alviso complex</td>
<td>41</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
</tr>
</tbody>
</table>

3.3 Alternative A – No Action, Year 50

Alternative A, the No Action Alternative is the most likely outcome in the absence of a long-term restoration plan. The long-term, year 50 conditions associated with Alternative A are based on the professional judgment of the landowners and project planners with respect to future levels of funding for land-management, the expected lifetime of existing levees and hydraulic structures, and other factors that
are inherently difficult to estimate. Alternative A may change somewhat in the future as specific assumptions are refined; however, for modeling and impact analysis purposes, Alternative A at year 50 was modeled as described in Appendix C of the Final Alternatives Report (PWA and others 2006) and presented in Figure 3-18 through Figure 3-20. Over the 50-year horizon, levees that do not provide key flood protection were assumed to have failed and eroded, restoring approximately 35 percent of the SBSP Restoration Project Area to tidal action in an unplanned manner. The bathymetry of the South Bay and the tidal sloughs was modified in response to the unplanned tidal restoration, sea-level rise, and the continuation of current morphologic trends.

3.3.1 Ponds

Over the 50-year horizon, the tidally-restored ponds are assumed to develop into mature salt marsh (PWA 2006b). Sedimentation is assumed to have raised pond-bottom elevations above vegetation-colonization elevations, vegetation is assumed to have established and marsh channels are assumed to have developed within the restored marsh. These changes were incorporated into the Alternative A, year 50 bathymetry. Mature salt marsh exists within the South Bay at an elevation near MHHW; therefore, the bathymetry within tidally-restored ponds was raised to MHHW. Sea-level rise is expected to increase water levels by approximately 15 cm (IPCC 2001); therefore, the year 50 MHHW is assumed to be 15 cm higher than baseline MHHW.

While the establishment of salt marsh effectively raises the bottom bathymetry to MHHW, the restored marsh areas still represent an increase in tidal prism when compared to baseline conditions. Much of this tidal prism is from the establishment of a mature marsh channel network. However, the marsh channels are too small to represent in the model bathymetry because of grid resolution limitations. The additional tidal prism supplied by the marsh channels was therefore approximated using a single channel within each pond extending from the breach location to the interior of the pond. For each breach, the expected tidal prism volume was calculated using hydraulic geometry relationships (see Section 3.3.2). A one-cell wide channel was then added to the marsh, linearly sloping from the breach depth to MHHW. The length of this channel was adjusted until its tidal prism approximated the predicted tidal prism.

3.3.2 Tidal Sloughs

The long-term slough channel cross-sectional areas for Alternative A were estimated using hydraulic-geometry relationships developed by Williams and others (2002) for San Francisco Bay. These empirical relationships are based on data from historic and existing mature San Francisco Bay salt marshes ranging in size from 2 to 5,700 ha (Williams and others 2002). The relationships equate channel depth, width and cross-sectional area to both marsh drainage area and tidal prism, and they can be used to predict potential long-term slough dimensions in response to changes in marsh drainage area and tidal prism.

Historically, the sloughs within the SBSP Restoration Project Area drained expansive areas of tidal marsh. Following the construction of levees to create the ponds, the tidal sloughs were isolated from the contributing tidal marsh area, thus reducing the tidal prism in the sloughs. Over time, the slough channels adjusted to the reduced tidal prism through sediment deposition and shoaling within the channels, which lead to the development of fringe marsh banks along the sloughs. Restoring the ponds to tidal action by
breaching the levees will increase the drainage area and tidal prism in the adjacent sloughs, inducing tidal scour as the channels adjust towards a new equilibrium in balance with the restored tidal prism.

The hydraulic-geometry relationships were used to estimate both the long-term tidal prism in the sloughs after levee failures and unplanned tidal conversions occur and mature salt marsh develops within the ponds, and the associated long-term equilibrium slough cross-sectional area. The assumption that mature marsh would develop over the 50-year horizon (i.e., marsh bed elevations would be close to MHHW and tidal channel networks would be fully developed) is based on the results of the SBGA (PWA 2006b).

The long-term equilibrium slough dimensions depend in part on the baseline tidal prism in the slough and whether the slough is currently in equilibrium with respect to the baseline tidal prism. It is likely that some of the sloughs are still accreting sediment and are therefore oversized with respect to the baseline tidal prism. Based on current available information and observed trends, Coyote Creek and Alviso Slough appear oversized. This was accounted for in the hydraulic-geometry estimates by using the existing modeled tidal prism in Coyote Creek and the tidal prism modeled by Schaaf & Wheeler (2004) for Alviso Slough. The remaining sloughs within the SBSP Restoration Project Area were assumed to be in equilibrium, therefore any increase in tidal prism in response to unplanned tidal conversion would result in scour and channel enlargement. This assumption may not be valid for all sloughs as some sloughs may be oversized and accreting sediment. However, the equilibrium assumption provides a conservative (high-end) estimate of tidal prism, tidal scour and long-term channel dimensions.

The long-term slough cross-sectional areas were calculated by estimating the combined baseline tidal prism and the tidal prism associated with the tidally-restored marsh drainage area. The marsh drainage areas were estimated using GIS for each assumed unplanned levee breach. The cumulative total upstream tidal prism was then estimated at specified slough cross sections for application within the model. Table 3-4 presents the estimated baseline and year 50 tidal prism at the slough mouths.

Although this analysis provided long-term estimates of slough depths and widths associated with the predicted increase in cross-sectional area, grid-resolution constraints prevented utilizing this information in the model simulations. Instead, a change in depth was calculated from the predicted cross-sectional area based on the assumption that the channel width remained constant. Table 3-5 presents the estimated increase in slough depth for each slough within the SBSP Restoration Project Area.
Table 3-4. Long-term Increase in Tidal Prism, Alternative A

<table>
<thead>
<tr>
<th>Slough</th>
<th>Baseline Tidal Prism (m3, millions)</th>
<th>Alternative A Tidal Prism (m3, millions)</th>
<th>Increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Eden Creek2</td>
<td>0.21</td>
<td>1.18</td>
<td>460%</td>
</tr>
<tr>
<td>North Creek2</td>
<td>0.17</td>
<td>0.22</td>
<td>30%</td>
</tr>
<tr>
<td>Old Alameda Creek2</td>
<td>0.32</td>
<td>2.10</td>
<td>560%</td>
</tr>
<tr>
<td>ACFCC</td>
<td>0.07</td>
<td>0.81</td>
<td>1,010%</td>
</tr>
<tr>
<td>Ravenswood Slough</td>
<td>0.02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mud Slough</td>
<td>0.62</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Artesian Slough</td>
<td>1.40</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Alviso Slough</td>
<td>0.83</td>
<td>1.71</td>
<td>110%</td>
</tr>
<tr>
<td>Guadalupe Slough3</td>
<td>14.38</td>
<td>15.36</td>
<td>10%</td>
</tr>
<tr>
<td>Stevens Creek</td>
<td>0.01</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Mountain View Slough</td>
<td>0.02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Charleston Slough</td>
<td>0.03</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Coyote Creek, d/s of Alviso Slough</td>
<td>6.70</td>
<td>7.84</td>
<td>20%</td>
</tr>
</tbody>
</table>

1 Baseline tidal prism for Alviso Slough is from Schaaf & Wheeler (2004); baseline tidal prism for Coyote Creek is based on the DELFT3D baseline modeling results; baseline tidal prism for all other sloughs is estimated from hydraulic geometry relationships (Williams and others 2002).

2 Baseline tidal prism for Mt. Eden Creek, North Creek, and Old Alameda Creek include tidal prism associated with the Eden Landing Ecological Reserve

3 Baseline tidal prism for Guadalupe Slough was estimated at the deepest point in the slough which is just upstream of the slough mouth.
Table 3-5. Long-term Increase in Channel Depth, Alternative A

<table>
<thead>
<tr>
<th>Slough Name</th>
<th>Location</th>
<th>Depth Increase (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Eden Creek</td>
<td>Up-slough</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>2.9</td>
</tr>
<tr>
<td>North Creek</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.5</td>
</tr>
<tr>
<td>Old Alameda Creek</td>
<td>Up-slough</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.1</td>
</tr>
<tr>
<td>ACFCC</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.4</td>
</tr>
<tr>
<td>Ravenswood Slough</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>--</td>
</tr>
<tr>
<td>Mud Slough</td>
<td>Mid-slough</td>
<td>--</td>
</tr>
<tr>
<td>Artesian Slough</td>
<td>Mouth</td>
<td>--</td>
</tr>
<tr>
<td>Alviso Slough</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>0.7</td>
</tr>
<tr>
<td>Guadalupe Slough</td>
<td>Up-slough</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>0.1</td>
</tr>
<tr>
<td>Stevens Creek</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td>Mountain View Slough</td>
<td>Mid-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>--</td>
</tr>
<tr>
<td>Charleston Slough</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>--</td>
</tr>
<tr>
<td>Coyote Creek</td>
<td>Up-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>--</td>
</tr>
</tbody>
</table>

3.3.3 South Bay Bathymetry

The South Bay is expected to change significantly over the 50 year horizon both with and without the SBSP Restoration Project (PWA 2006b). The Alternative A, year 50 model bathymetry was modified in order to account for the potential changes in the absence of the SBSP Restoration Project by applying the predictions of intertidal mudflat loss and gain documented in the SBGA (PWA 2006b) and discussed briefly in Section 2.3.7. The SBGA’s long-term predictions for Alternative A include the following changes: North of San Bruno Shoal, no bathymetric change is predicted; between the San Bruno Shoal and the Dumbarton Bridge, approximately 25 cm of erosion is estimated to occur on the intertidal...
mudflats; South of Dumbarton Bridge in the far South Bay, approximately 34 cm of sedimentation is estimated to occur on the mudflats; and no bathymetric changes are assumed to occur within the main South Bay channel or the subtidal areas (PWA 2006b). The baseline bathymetry was modified using these estimates of bathymetric change. Only the bottom elevations of the intertidal mudflat areas were raised or lowered depending on the assumption of deposition or erosion. This area extended from MHHW to the bottom of wave-induced sweep zone, defined as 1.8 m (6 ft) below MLLW. In order to avoid a step at the transition between the raised or lowered regions and the existing bathymetry, a smoothing routine was applied at the transition. However, the grid resolution of the Bay (see Figure 2-4) is large relative to the estimated bathymetric change, therefore any discontinuity between the modified and existing bathymetry is negligible.

The depths of the tidal sloughs were also modified to account for the increase in tidal prism associated with the breached ponds. Hydraulic geometry calculations were used to determine the depth of the channel thalwegs, as discussed in section 3.3.2. No bathymetric changes were applied to the channels and sloughs outside of the SBSP Restoration Project Area.

3.3.4 Boundary and Initial Conditions

Boundary conditions for Alternative A at year 50 were based on those for baseline conditions as presented in Section 3.1.3. The only change involved included projected sea-level rise based on IPCC (2001) mid-range estimates, consistent with other SBSP Restoration Project reports (PWA 2006b). The projected sea-level rise rate of 0.3 cm/year results in a water level increase of approximately 15 cm over 50 years. To account for sea-level rise within the model, the water levels at the boundary (near the Oakland-Bay Bridge) were increased by 15 cm. Surface winds and tributary inflows were unchanged from baseline conditions.

Initial conditions were also modified to account for sea-level rise. The initial water level condition was uniformly raised 15 cm. The initial velocity field and initial salinity condition are unchanged from baseline conditions. The initial salinity condition within the tidally-restored ponds (35 percent of the project area assuming unplanned levee failure and erosion) was developed using the same method described for the baseline simulation in Section 3.1.3.

3.4 Alternative C – Tidal Habitat Emphasis, Year 50

Over the 50-year horizon, the tidally-restored ponds in Alternative C were assumed to develop into mature salt marsh (PWA 2006b). Sedimentation is assumed to raise pond-bottom elevations above vegetation-colonization elevations, vegetation is assumed to establish and marsh channels are assumed to develop within the restored marsh. Correspondingly, the bathymetry of the South Bay and the tidal sloughs were modified in response to the tidal restoration, sea-level rise, and the continuation of current morphologic trends.
3.4.1 Ponds

Under Alternative C, all of the tidally-restored ponds were assumed to develop into mature salt marsh over the 50-year horizon. These changes were incorporated into the Alternative C, year 50 bathymetry, following the same approach outlined in Section 3.3.1.

3.4.2 Tidal Sloughs

The long-term slough dimensions and tidal prism for Alternative C were estimated using the same method described for Alternative A in Section 3.3.2. Table 3-6 presents the estimated baseline and year 50 tidal prism at the slough mouths in response to restoring 90 percent of the ponds within the SBSP Restoration Project Area to tidal action. As with Alternative A, all ponds restored to tidal action were assumed to develop into mature salt marsh over the 50-year horizon. Table 3-7 presents the estimated increase in slough depth.

Table 3-6. Long-term Increase in Tidal Prism, Alternative C

<table>
<thead>
<tr>
<th>Slough</th>
<th>Baseline Tidal Prism (m³, millions)¹</th>
<th>Alternative C Tidal Prism (m³, millions)</th>
<th>Increase (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Eden Creek</td>
<td>0.21</td>
<td>0.57</td>
<td>170%</td>
</tr>
<tr>
<td>North Creek</td>
<td>0.17</td>
<td>0.81</td>
<td>380%</td>
</tr>
<tr>
<td>Old Alameda Creek</td>
<td>0.32</td>
<td>3.56</td>
<td>1,030%</td>
</tr>
<tr>
<td>ACFCC</td>
<td>0.07</td>
<td>1.26</td>
<td>1,630%</td>
</tr>
<tr>
<td>Ravenswood Slough</td>
<td>0.02</td>
<td>1.28</td>
<td>6,530%</td>
</tr>
<tr>
<td>Mud Slough</td>
<td>0.62</td>
<td>1.49</td>
<td>140%</td>
</tr>
<tr>
<td>Artesian Slough</td>
<td>1.40</td>
<td>1.57</td>
<td>10%</td>
</tr>
<tr>
<td>Alviso Slough</td>
<td>0.83</td>
<td>3.28</td>
<td>300%</td>
</tr>
<tr>
<td>Guadalupe Slough</td>
<td>14.38</td>
<td>15.83</td>
<td>10%</td>
</tr>
<tr>
<td>Stevens Creek</td>
<td>0.01</td>
<td>0.34</td>
<td>6,050%</td>
</tr>
<tr>
<td>Mountain View Slough</td>
<td>0.02</td>
<td>0.62</td>
<td>2,960%</td>
</tr>
<tr>
<td>Charleston Slough</td>
<td>0.03</td>
<td>0.11</td>
<td>270%</td>
</tr>
<tr>
<td>Coyote Creek, d/s of Alviso Slough</td>
<td>6.70</td>
<td>12.73</td>
<td>90%</td>
</tr>
</tbody>
</table>

¹ Baseline tidal prism for Alviso Slough is from Schaaf & Wheeler (2004); baseline tidal prism for Coyote Creek is based on the DELFT3D baseline modeling results; baseline tidal prism for all other sloughs is estimated from hydraulic geometry relationships (Williams and others 2002).

² Baseline tidal prism for Mt. Eden Creek, North Creek, and Old Alameda Creek include tidal prism associated with the Eden Landing Ecological Reserve

³ Baseline tidal prism for Guadalupe Slough was estimated at the deepest point in the slough which is just upstream of the slough mouth
Table 3-7. Long-term Increase in Channel Depth, Alternative C

<table>
<thead>
<tr>
<th>Slough Name</th>
<th>Location</th>
<th>Depth Increase (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mt. Eden Creek</td>
<td>Up-slough</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>2.4</td>
</tr>
<tr>
<td>North Creek</td>
<td>Up-slough</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>2.3</td>
</tr>
<tr>
<td>Old Alameda Creek</td>
<td>Up-slough</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.4</td>
</tr>
<tr>
<td>ACFCC</td>
<td>Up-slough</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.8</td>
</tr>
<tr>
<td>Ravenswood Slough</td>
<td>Up-slough</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>2.3</td>
</tr>
<tr>
<td>Mud Slough</td>
<td>Mid-slough</td>
<td>0.7</td>
</tr>
<tr>
<td>Artesian Slough</td>
<td>Mouth</td>
<td>0.1</td>
</tr>
<tr>
<td>Alviso Slough</td>
<td>Up-slough</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.1</td>
</tr>
<tr>
<td>Guadalupe Slough</td>
<td>Up-slough</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>0.1</td>
</tr>
<tr>
<td>Stevens Creek</td>
<td>Up-slough</td>
<td>1.8</td>
</tr>
<tr>
<td>Mountain View Slough</td>
<td>Mid-slough</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>1.8</td>
</tr>
<tr>
<td>Charleston Slough</td>
<td>Up-slough</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>0.6</td>
</tr>
<tr>
<td>Coyote Creek</td>
<td>Up-slough</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Mid-slough</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Mouth</td>
<td>0.4</td>
</tr>
</tbody>
</table>

3.4.3 South Bay Bathymetry

The Alternative C, year 50 bathymetry was developed using the same approach outlined for Alternative A, year 50 as described in Section 3.3.3. The SBGA’s long-term predictions for Alternative C include the following changes: North of San Bruno Shoal, no bathymetric change is predicted; between the San Bruno Shoal and the Dumbarton Bridge, approximately 25 cm of erosion is estimated to occur on the intertidal mudflats; South of Dumbarton Bridge, 22 cm of mudflat erosion is estimated to occur; and no bathymetric change is assumed to occur in the main South Bay channel, the subtidal areas, or within
channels and sloughs outside of the SBSP Restoration Project Area (PWA 2006b). The channel depths were also updated based on hydraulic geometry calculations as described in Section 3.4.2.

3.4.4 Boundary and Initial Conditions

Boundary conditions for Alternative C at year 50 were based on those for Alternative C at year 0 (Section 3.2.2). The only change involved included projected sea-level rise, as described for Alternative A, year 50 in Section 3.3.4. Surface winds and tributary inflows were unchanged from baseline conditions.

Initial conditions were also modified using the same approach as Alternative A at year 50. The initial water level condition was raised to account for sea-level rise and the initial velocity and salinity conditions are unchanged from baseline conditions. The initial salinity condition within the tidally-restored ponds is the same as described for Alternative C, year 0, summer conditions (Section 3.2.2).
Figure 3-1
South Bay Salt Pond Restoration Project
Baseline, Eden Landing
Figure 3-2
South Bay Salt Pond Restoration Project
Alviso, Baseline
South Bay Salt Pond Restoration Project
Baseline, Ravenswood
This figure shows the bathymetry used in the South San Francisco Bay Model. The ISP breaches and outboard marsh channels were included. Dry cell and thin dam flow barriers are shown in yellow.
This figure shows the bathymetry used in the South San Francisco Bay Model. Dry cell and thin dam flow barriers are shown in yellow.
This figure shows the water surface elevation and salinity applied to the South Bay Salt Ponds model.
Alternative C: Tidal Habitat Emphasis, Eden Landing, Year 0
Figure 3-8

South Bay Salt Pond Restoration Project

Alternative C: Tidal Habitat Emphasis, Alviso, Year 0
Figure 3-9

South Bay Salt Pond Restoration Project

Alternative C: Tidal Habitat Emphasis, Ravenswood, Year 0
Figure 3-10

South Bay Salt Pond Restoration Project
Station Locations
Figure 3-11

South Bay Salt Pond Restoration Project

South Bay Model Open Boundary Comparison

(a) GSFB Model Water Levels @ South Bay Model Boundary

(b) GSFB Model Water Levels @ South Bay Model Boundary
Figure 3-12

South Bay Salt Pond Restoration Project

GSFB Model Water Level Comparisons
Figure 3-13
South Bay Salt Pond Restoration Project
GSFB and South Bay Model Tidal Prism Comparisons
Figure 3-14

South Bay Salt Pond Restoration Project
South Bay Model Water Level Comparisons

(a) San Mateo Bridge

(b) Dumbarton Bridge

(c) Channel Marker 17
Figure 3-15
South Bay Salt Pond Restoration Project
Eden Landing Breach Locations
Figure 3-16

South Bay Salt Pond Restoration Project

Alviso Breach Locations
Figure 3-17

South Bay Salt Pond Restoration Project

Ravenswood Breach Locations
Alternative A: No Action, Eden Landing, Year 50
figure 3-19

South Bay Salt Pond Restoration Project

Alternative A: No Action, Alviso, Year 50
South Bay Salt Pond Restoration Project

Figure 3-20

South Bay Salt Pond Restoration Project

Alternative A: No Action, Ravenswood, Year 50
4. ALTERNATIVE C, YEAR 0, SUMMER CONDITIONS

This section presents the results of the Alternative C, year 0, simulation under summer conditions, including a comparison with baseline summer conditions. The model predictions are analyzed using time series at stations throughout the South Bay. Figure 4-1 through Figure 4-4 show the station locations for the South Bay and three pond complexes. The model predictions are also analyzed at specific snapshots in time for the entire South Bay and the pond complexes. Figure 4-5 shows where in the analysis period the snapshots were taken with respect to the spring-neap tidal cycle.

The model predictions are compared to baseline summer predictions in order to assess the short-term impacts of opening 90 percent of the ponds to tidal action. As discussed in Section 2.3.1, phasing is not considered and all tidally-restored ponds are opened at year 0. This assumption is considered conservative – and hypothetical – and would result in the maximum system-wide response and the largest potential hydrodynamic changes. Therefore, the results presented in this section are likely an overstatement of the potential impacts. In reality, the restoration will be phased over many years, thereby reducing the magnitude of the project’s impacts. In addition, the simulations presented in this section do not account for the potential scour that would occur as a result of the increased tidal prism in the sloughs and in the main South Bay channel. The sloughs will eventually adjust to the tidal prism, although the timing for this adjustment is unknown – it could be weeks in some sloughs and years in others. The year 50 simulations include estimates of long-term potential channel scour. Modeling with and without scour provides a conservative range of potential hydrodynamic changes.

The sections below present the results with respect to water levels, tidal prism, salinity, circulation, and bed shear stress.

4.1 Water Levels

This section presents the model results with respect to water levels in the South Bay, the tidal sloughs, and the ponds under Alternative C, year 0, summer conditions. The water levels within the South Bay are primarily driven by the tides. The tides in the South Bay are mixed semidiurnal, with two high and two low tides of unequal heights each day. In addition, the tides exhibit strong spring-neap variability, with the spring tides (larger average tidal range) occurring approximately every two weeks during the full and new moon. Spring tides exhibit the greatest difference between successive high and low tides. Neap tides (smaller average tidal range) occur approximately every two weeks during the moon’s quarters, and exhibit the smallest difference between successive high and low tides. Alternative C has the potential to alter the water levels within the South Bay and the tidal sloughs, as presented in the sections below.

4.1.1 South Bay

In the South Bay, the modeled water levels at the San Mateo and Dumbarton Bridges under Alternative C exhibit minimal change when compared with the baseline. Table 4-1 shows the water surface elevation and phase difference for the South Bay under Alternative C summer conditions. Positive values in Table 4-1 represent an increase in water surface elevation when compared with baseline conditions, and
negative values represent a decrease in water surface elevation. Positive phase values correspond to a slower arrival time under Alternative C, or a phase lag when compared with baseline conditions, whereas negative values represent that modeled water levels under Alternative C are leading baseline conditions.

At the San Mateo Bridge (Figure 4-6), lower low water (LLW) increases by approximately 1 cm under both neap and spring conditions (see Table 4-1), and higher high water (HHW) decreases by approximately 1 cm. At the Dumbarton Bridge (Figure 4-7), LLW increases by approximately 2 cm under neap tide and 1 cm under spring tide, and HHW decreases by approximately 1 cm under neap tide and 4 cm under spring tide. The water level changes are relatively negligible north of the Dumbarton Bridge, and the differences are similar to the level of accuracy of the model calibration with respect to tidal amplitudes. The model predicts no noticeable change in phase relative to baseline conditions at either bridge station.

Within the far South Bay, water level and phase changes under Alternative C become more pronounced. At Channel Marker 17 (Figure 4-8), located near the mouth of Coyote Creek, LLW increases by approximately 16 cm under neap tide and 62 cm under spring tide, and HHW decreases by approximately 4 cm under neap tide and 9 cm under spring tide. In general, there is a reduction of the tidal amplitude on three phases of the tidal day (a decrease in high water levels and an increase in low water levels), with the largest change observed at LLW under spring tide conditions. The larger change observed at LLW reflect the influence of the Bay’s bathymetry on the water-level dynamics. At LLW, the wetted cross-sectional area conveying water is small, particularly in the far South Bay. The main channel in the far South Bay and through the Dumbarton Narrows is draining a larger surface area than under baseline conditions (e.g., the far South Bay plus the tidally-restored ponds). The baseline wetted cross-sectional area (the area below baseline LLW) does not provide adequate conveyance to drain this larger area, therefore LLW increases. The percent difference in wetted cross-sectional area at HHW between baseline and Alternative C, year 0 conditions is not as great; therefore, the change observed at HHW is smaller than that observed at LLW. It is likely the differences observed at LLW and the asymmetry between the differences observed at LLW and HHW would decrease once the tidal channels and the main South Bay channel have scoured and the conveyance potential is increased.

The long-term trend in reduced tidal amplitude would lead to an increase in the MLLW tidal datum, and a decrease in the MHHW tidal datum. Figure 4-9 depicts the change in MLLW in response to the tidal restoration. The increase in MLLW is most evident in the far South Bay, with the change trending toward zero just north of the San Mateo Bridge. Similar changes are seen with respect to MHHW (Figure 4-10), with the largest reduction occurring in the far South Bay, and the reduction trending toward zero just north of the San Mateo Bridge.

Harmonic analysis was performed on water levels at several stations along the main South Bay channel, and the computed phase and amplitudes of the M_2 and K_1 tidal constituents for baseline and Alternative C, year 0 conditions are compared (Figure 4-11). By comparing the phase and amplitude of the two primary harmonic constituents along the centerline of the South Bay, it is possible to assess how the tidal restoration is affecting the tidal propagation within the South Bay. Figure 4-11a presents the computed phase of the M_2 and K_1 tidal constituents. Little difference is observed in the South Bay as a result of the
restoration project, which is consistent with Table 4-1. Figure 4-11b presents the computed amplitude of the M_2 and K_1 tidal constituents. As the tides propagate into the South Bay, the amplitude of both tidal constituents is decreased, with a more marked difference observed in the M_2 tidal constituent in the far South Bay.

Table 4-1. South Bay Tidal Water Surface Elevation and Phase Differences under Alt C, Year 0, Summer
(Water surface elevation differences in cm, phase differences in minutes. June 13 = neap tide, June 22 = spring tide.)

<table>
<thead>
<tr>
<th>Station Name</th>
<th>June 13 LLW</th>
<th>June 13 HHW</th>
<th></th>
<th>June 22 LLW</th>
<th>June 22 HHW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WSE</td>
<td>Phase</td>
<td>WSE</td>
<td>Phase</td>
<td>WSE</td>
</tr>
<tr>
<td>San Mateo Bridge, Figure 4-6</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dumbarton Bridge, Figure 4-7</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Channel Marker 17, Figure 4-8</td>
<td>16</td>
<td>10</td>
<td>-4</td>
<td>10</td>
<td>62</td>
</tr>
</tbody>
</table>

4.1.2 Tidal Sloughs

Alternative C has a significant effect on modeled tidal slough water levels within all the three pond complexes. This is expected as the tidally-restored ponds are breached directly to the tidal sloughs, and the volume of water exchanged through the breach represents an increase over the existing, or baseline, tidal prism in the slough. The overall magnitude of the effect on water levels within each slough is therefore dependent on the baseline tidal prism and the tidal prism added to the slough by the restored ponds. The bathymetry and model resolution of the sloughs also plays an important role in determining the change in water levels. As described in Section 3.2, potential slough scour was not included in the simulation; therefore many of the sloughs are undersized relative to the newly restored flow conditions. Tidal damping, or a reduction in tidal amplitude, occurs in undersized sloughs. Over time, the sloughs would widen and deepen, eventually reaching equilibrium conditions and removing the effects of tidal damping. However, this morphological response is not included in the year 0 simulation. As discussed in Section 2.3.5, some of the sloughs, particularly those in the Eden Landing and Ravenswood pond complex, are modeled with larger than actual channel widths due to limitations with respect to the grid resolution; therefore, the model results for these sloughs may underestimate the potential short-term changes in water levels.

Table 4-2 shows the water surface elevation and phase difference for the water levels under Alternative C at both upstream (landward) and downstream (near the mouth) stations in each tidal slough. Positive values in Table 4-2 represent an increase in water surface elevation when compared with baseline conditions and negative values represent a decrease in water surface elevation. Positive phase values correspond to a slower arrival time under Alternative C, or a phase lag when compared with baseline conditions, whereas negative values represent that modeled water levels under Alternative C are leading baseline conditions.

Near the mouths of sloughs (downstream stations), the water level trends are similar to that seen at Channel Marker 17 in the South Bay. For most sloughs, there is a moderate reduction of tidal amplitude on three phases of the tidal day (a moderate decrease in high water levels and an increase in low water
levels), with the largest change observed at LLW when compared to baseline conditions. The larger increase in water levels at LLW reflects the influence of the channel geometry on the water level dynamics. At low water levels, the wetted cross-section area of the channel is small, yet it is draining a large surface area (e.g., the tidally-restored ponds). Therefore, in order to convey the larger volume of water, LLW is increased relative to baseline conditions. The relative difference between the wetted cross-sectional area under baseline and Alternative C, year 0 conditions is not as great at HHW, therefore a smaller water level difference is observed. Water levels downstream in Alviso Slough (Figure 4-22) provide an example of this response pattern. At both high water marks and higher low water (HLW), Alternative C predicts damping on the order of 20 – 60 cm during spring tides and by 10 – 40 cm during neap tides. In contrast, the tidal range of LLW is predicted to dampen by more than 100 cm during spring tides and by 60 cm during neap tides. The sloughs located in the far South Bay in the Alviso pond complex experience the largest reductions in tidal amplitude owing to the larger baseline tidal range and the subsided nature of the ponds in the Alviso pond complex which provide for greater increases in tidal prism.

Phasing changes are relatively small at the downstream stations in the Eden Landing pond complex, with Alternative C lagging behind baseline conditions by approximately 20 minutes during neap tides and 30 minutes during spring tides. In the Ravenswood pond complex, Alternative C lags behind baseline conditions on the order of 10 – 30 minutes during neap tide and 40 – 90 minutes during spring tide. In the Alviso pond complex, phase changes are on the order of 60 minutes during neap tide and 90 minutes during spring tide in Alviso Slough (Figure 4-22) and Guadalupe Slough (Figure 4-24) and slightly less in Coyote Creek (Figure 4-16).

Water level changes are more pronounced upstream in the tidal sloughs, owing both to friction and the undersized nature of the sloughs. The asymmetry between the increase in LLW and the reductions in tidal amplitude on the other phases of the tide is also less pronounced than at the downstream stations. The greater frictional effects coupled with the undersized nature of the sloughs relative to the tidal prism they supply also leads to greater phase differences, with Alternative C lagging approximately 2 hours behind baseline conditions upstream in Alviso Slough (Figure 4-23) and Guadalupe Slough (Figure 4-25).
Table 4-2. Tidal Slough Water Surface Elevation and Phase Differences under Alt C, Year 0, Summer
(Water surface elevation differences in cm, phase differences in minutes. June 13 = neap tide, June 22 = spring tide.)

<table>
<thead>
<tr>
<th>Station Name</th>
<th>June 13 LLW</th>
<th>June 13 HHW</th>
<th>June 22 LLW</th>
<th>June 22 HHW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WSE</td>
<td>Phase</td>
<td>WSE</td>
<td>Phase</td>
</tr>
<tr>
<td>Eden Landing pond complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACFCC Downstream, Figure 4-12</td>
<td>16</td>
<td>20</td>
<td>-8</td>
<td>20</td>
</tr>
<tr>
<td>ACFCC Upstream, Figure 4-13</td>
<td>0</td>
<td>60</td>
<td>-5</td>
<td>20</td>
</tr>
<tr>
<td>Old Alameda Creek Downstream, Figure 4-14</td>
<td>8</td>
<td>0</td>
<td>-4</td>
<td>0</td>
</tr>
<tr>
<td>Old Alameda Creek Upstream, Figure 4-15</td>
<td>10</td>
<td>10</td>
<td>-6</td>
<td>20</td>
</tr>
<tr>
<td>Alviso pond complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coyote Creek Power Tower, Figure 4-16</td>
<td>25</td>
<td>30</td>
<td>-12</td>
<td>0</td>
</tr>
<tr>
<td>Coyote Creek Railroad Bridge, Figure 4-17</td>
<td>20</td>
<td>40</td>
<td>-23</td>
<td>30</td>
</tr>
<tr>
<td>Coyote Creek/Island Ponds, Figure 4-18</td>
<td>19</td>
<td>20</td>
<td>-23</td>
<td>30</td>
</tr>
<tr>
<td>Coyote Creek Upstream, Figure 4-19</td>
<td>19</td>
<td>30</td>
<td>-25</td>
<td>30</td>
</tr>
<tr>
<td>Mud Slough Downstream, Figure 4-20</td>
<td>19</td>
<td>30</td>
<td>-25</td>
<td>10</td>
</tr>
<tr>
<td>Mud Slough Upstream, Figure 4-21</td>
<td>17</td>
<td>20</td>
<td>-28</td>
<td>70</td>
</tr>
<tr>
<td>Alviso Slough Downstream, Figure 4-22</td>
<td>60</td>
<td>50</td>
<td>-27</td>
<td>20</td>
</tr>
<tr>
<td>Alviso Slough Upstream, Figure 4-23</td>
<td>79</td>
<td>100</td>
<td>-45</td>
<td>130</td>
</tr>
<tr>
<td>Guadalupe Slough Downstream, Figure 4-24</td>
<td>52</td>
<td>50</td>
<td>-11</td>
<td>10</td>
</tr>
<tr>
<td>Guadalupe Slough Upstream, Figure 4-25</td>
<td>75</td>
<td>110</td>
<td>-41</td>
<td>130</td>
</tr>
<tr>
<td>Moffett Channel, Figure 4-26</td>
<td>75</td>
<td>110</td>
<td>-41</td>
<td>130</td>
</tr>
<tr>
<td>Stevens Creek Downstream, Figure 4-27</td>
<td>12</td>
<td>0</td>
<td>-17</td>
<td>20</td>
</tr>
<tr>
<td>Stevens Creek Upstream, Figure 4-28</td>
<td>11</td>
<td>0</td>
<td>-29</td>
<td>130</td>
</tr>
<tr>
<td>Mountain View Slough Downstream, Figure 4-29</td>
<td>51</td>
<td>60</td>
<td>-29</td>
<td>110</td>
</tr>
<tr>
<td>Mountain View Slough Upstream, Figure 4-30</td>
<td>50</td>
<td>30</td>
<td>-28</td>
<td>110</td>
</tr>
<tr>
<td>Charleston Slough Downstream, Figure 4-31</td>
<td>41</td>
<td>50</td>
<td>-21</td>
<td>60</td>
</tr>
<tr>
<td>Charleston Slough Upstream, Figure 4-32</td>
<td>32</td>
<td>60</td>
<td>-21</td>
<td>50</td>
</tr>
<tr>
<td>Ravenswood pond complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenswood Slough Downstream, Figure 4-33</td>
<td>15</td>
<td>10</td>
<td>-14</td>
<td>30</td>
</tr>
<tr>
<td>Ravenswood Slough Upstream, Figure 4-34</td>
<td>49</td>
<td>30</td>
<td>-11</td>
<td>10</td>
</tr>
</tbody>
</table>

4.1.3 Ponds

Under baseline conditions, only the Island Ponds in the Alviso pond complex and the Eden Landing Ecological Reserve in the Eden Landing pond complex are open to tidal inundation. Restoring additional ponds to tidal action would therefore impact water levels within these existing restoration sites. Figure 4-35 displays the water level in the center of Pond A20 (one of the Island Ponds). Under Alternative C, Pond A20 experiences a reduction in high water levels. Low water levels remain unchanged as Pond A20 sits relatively high in the tide frame and the pond is effectively drained under low water conditions.
In the Eden Landing Ecological Reserve, water levels in the north wetlands remain largely unaffected (Figure 4-36). These wetlands are hydraulically connected to the South Bay via Mount Eden Creek, which experiences only a nominal increase in tidal prism under Alternative C. The southern wetlands are hydraulically connected to the South Bay via North Creek. The tidal prism in North Creek is expected to increase by approximately 380 percent due to the tidal breaches under Alternative C (Figure 3-15); therefore the water levels in the southern wetlands experience reductions in tidal amplitude (a decrease in high water levels and an increase in low water levels), with the largest changes occurring on spring tides (Figure 4-37).

Ponds that are not hydraulically connected to the South Bay under baseline conditions (except by culverts and flap gates) would be connected under Alternative C through tidal breaches to the sloughs. The water levels in the ponds are therefore similar to that of the tidal sloughs. In the Eden Landing and Ravenswood ponds complexes, the pond bottom elevations are relatively high in the tide frame; therefore, the ponds are only inundated during high tides. Figure 4-38 shows the water level variability in Pond E6B in the Eden Landing pond complex. This pond only experiences diurnal tidal variability during spring tides, and during neap tides, most of the pond area would be effectively drained. However, marsh channels inside the pond would likely exhibit more tidal variability.

In the Alviso pond complex, pond bottom elevations sit lower in the tide frame and the ponds are therefore exposed to diurnal tidal action throughout the spring-neap tide cycle. Ponds A7 and A8 (Figure 4-39 and Figure 4-40, respectively) provide an example of the tide range expected within the subsided ponds. Unlike Pond E6B and similar ponds with higher bottom elevations, Ponds A7 and A8 do not experience cycles of wetting and drying during the diurnal tidal cycle. Instead, the ponds contain water at all times. The tide range within any specific pond will depend on the location of its hydraulic connection to the Bay and the pond’s elevation relative to the tides.

4.2 Tidal Prism

Tidal prism – the volume of water exchanged over a complete tidal cycle – is a useful quantity for examining the changes in water mass movement as a result of the different restoration alternatives. Estimates of tidal prism provide a first order indicator of several potential responses to the restoration. For example, the tidal prism controls the evolving geomorphology of the system by determining the scour potential from tidal currents. Additionally, tidal prism delivers suspended sediment into the restored regions, thereby promoting the infill of subsided salt ponds. Tidal prism also comprises the denominator in the estimate of flushing time. Flushing time indicates the rate of water turnover in a region, which often influences water quality (Monsen and others 2002; Sheldon and Alber 2006).

For the basis of comparing tidal prism estimates with previous studies, tidal prism has been estimated as the volume of water crossing a cross-section during a flood tide. Tidal prism was estimated from the DELFT3D model by first calculating the instantaneous discharge as the product of velocity and water depth across the cross-sections shown in Figure 4-41 through Figure 4-44. These instantaneous discharges were then integrated for each flood tide to estimate the total volume of water entering through
that cross-section during each tide. The reported tidal prism is the average of all the flood tide volumes which occurred during the analysis period.

Estimates of tidal prism based on the DELFT3D model results for the baseline conditions exhibit fair to good agreement with previous estimates of tidal prism, as shown in Table 4-3. The DELFT3D baseline estimate of tidal prism exceeds Schemel’s (1995) estimate at the San Mateo Bridge by approximately 15 percent, and at the Dumbarton Bridge, the model and Schemel (1995) agree within approximately 10 percent. The agreement with the results of Gross and Schaaf & Wheeler (2003a) are within 40 percent at Calaveras Point and Coyote Creek at the Railroad Bridge. On Coyote Creek east of the Island Ponds, the two estimates differ by just over a factor of two. Some of these discrepancies may be attributed to different methods for estimating tidal prism, consideration of different tidal periods, and, in the case of Gross and Schaaf & Wheeler (2003a), different landward extents of the model domains.

Table 4-3. Comparison of Previous Estimates of Tidal Prism with DELFT3D Baseline Estimates

<table>
<thead>
<tr>
<th>Transect location</th>
<th>Tidal prism (millions of cubic meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Mateo Bridge</td>
<td>220</td>
</tr>
<tr>
<td>Dumbarton Bridge</td>
<td>62</td>
</tr>
<tr>
<td>Calaveras Point</td>
<td>-</td>
</tr>
<tr>
<td>Coyote Creek at RR Bridge</td>
<td>-</td>
</tr>
<tr>
<td>Coyote Creek east of Island Ponds</td>
<td>-</td>
</tr>
</tbody>
</table>

The tidal prism estimates for Alternative C, year 0, summer conditions are compared against baseline conditions in Table 4-4. For cross-sections outside of the project area, such as the San Mateo Bridge, the Dumbarton Bridge, and non-project sloughs, the difference between baseline and Alternative C, year 0, summer conditions is less than five percent. Figure 4-45 displays the instantaneous modeled flux through San Mateo and Dumbarton Bridge cross-sections under baseline and Alternative C, year 0, summer conditions. At the San Mateo Bridge cross-section, little difference is evident. However, at the Dumbarton Bridge cross-section, the modeled flux decreases slightly under Alternative C conditions. This is consistent with the tidal prism estimates presented in Table 4-4.

At a cross-section through Channel Marker 17, the modeled flux is slightly larger under Alternative C conditions when compared to baseline conditions (Figure 4-46). Further south at Calaveras Point, the modeled flux under Alternative C is noticeably larger than under baseline conditions, which is consistent with the 21 percent increase in tidal prism predicted in Table 4-4.

The tidal prism associated with the sloughs in the three pond complexes is predicted to increase. The increase is dependent on the volume of the tidally-restored ponds breached to particular slough and how accurately a slough is represented in the model. For example, the tidal prism in the ACFCCC is predicted to increase by approximately 63 percent, which is consistent with the pond volume draining to the flood control channel. In contrast, the tidal prism in Old Alameda Creek is predicted to increase by less than 15
percent. Although this volume increase is consistent with the volume of ponds breached to this slough, this is likely an underestimate of the actual percentage increase in tidal prism as a result of the SBSP Restoration Project. Old Alameda Creek, and the associated channels of Mt. Eden Creek and North Creek, are oversized in the model grid, as discussed in Section 2.3.5. The baseline tidal prism in Old Alameda Creek from estimated from GIS is 0.32 million cubic meters (Table 3-6), which is an order or magnitude less than the baseline estimate from the model of 1.4 million cubic meters (Table 4-4). However, the increase in tidal prism of 0.2 million cubic meters is likely representative of the added pond volume due to the restoration; therefore the tidal prism in Old Alameda Creek could increase approximately 67 percent (from 0.32 to 0.52 million cubic meters). Figure 4-47 presents the modeled flux through the ACFCC and Old Alameda Creek transects under both baseline and Alternative C, year 0, summer conditions. The modeled flux is predicted to increase in both sloughs, with a larger increase associated with the ACFCC.

A range of tidal prism response is predicted within the Alviso pond complex. Most of the slough transects exhibit an increase in tidal prism as more water flows through the sloughs and into the breached ponds. Along Coyote Creek, there is a progression of tidal prism changes (Figure 4-48). Near the mouth, at the Power Tower, the predicted change is several million cubic meters. Since Coyote Creek is a large channel, this change represents an increase of only 36 percent over baseline even though several large ponds would breach to this channel. Further up Coyote Creek, at the Railroad Bridge and east of the Island Ponds, the tidal prism decreases as a result of restoration. This decrease occurs because flows which reach these transects under baseline conditions are deflected into the newly breached ponds under Alternative C.

Alviso Slough and Guadalupe Slough are represented fairly well in the model, and the modeled flux at the downstream transects does increase measurably in both sloughs (Figure 4-49), with an increase in tidal prism of approximately 160 percent predicted by the model (Table 4-4). The predicted increases are largest for those cross-sections across small sloughs which access large pond areas. For instance, a tidal prism increase of approximately 280 percent is predicted for Mountain View Slough, a small slough that would connect two large ponds to the Bay. In addition, the large increase associated with Mountain View Slough is caused in part by a portion of Charleston Slough’s existing and potential tidal prism being routed through the upstream breach to Pond A1 on Charleston Slough, through Pond A1, and into Mountain View Slough. Mountain View Slough is among those sloughs that are oversized in the model; therefore the actual percent increase in tidal prism may be larger. The same can be said for Charleston Slough and Stevens Creek. These sloughs have relatively little flow under baseline summer conditions, and the modeled flux at the downstream transects increases markedly under Alternative C, year 0, summer conditions (Figure 4-50 and Figure 4-51).

The model predicts an increase of approximately 180 percent in tidal prism for Ravenswood Slough, the main tidal channel in the Ravenswood pond complex (Figure 4-51). Under baseline conditions, Ravenswood Slough’s tidal prism is among the smallest of all the cross-section presented in Table 4-4. Hence, with the addition of nearly the entire complex’s pond area to the slough’s drainage area, the large increase is expected. Ravenswood Slough is also among those sloughs that are oversized in the model, as discussed in Section 2.3.5; therefore, the actual percent increase in tidal prism may be larger.
The tidal prism within each slough may be larger than presented in Table 4-4 after sloughs scour and deepen and before pond sedimentation raises pond bottom elevations. Due to the subsided nature of the ponds within the Alviso pond complex, this potential increase in tidal prism would be greatest in the Alviso pond complex sloughs.

Table 4-4. Comparison of Tidal Prism between Baseline and Alternative C, year 0, Summer

<table>
<thead>
<tr>
<th>Transect Location</th>
<th>Tidal Prism (millions of cubic meters)</th>
<th>% change baseline to Alt. C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline summer</td>
<td>Alternative C year 0, summer</td>
</tr>
<tr>
<td>South Bay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Mateo Bridge</td>
<td>270</td>
<td>260</td>
</tr>
<tr>
<td>Dumbarton Bridge</td>
<td>71</td>
<td>68</td>
</tr>
<tr>
<td>Eden Landing pond complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACFCC</td>
<td>1.4</td>
<td>2.3</td>
</tr>
<tr>
<td>Old Alameda Creek</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Mount Eden Creek</td>
<td>0.58</td>
<td>0.74</td>
</tr>
<tr>
<td>Ravenswood pond complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenswood Slough</td>
<td>0.53</td>
<td>1.5</td>
</tr>
<tr>
<td>Alviso pond complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calaveras Point</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>Coyote Creek at Power Tower</td>
<td>6.8</td>
<td>9.2</td>
</tr>
<tr>
<td>Coyote Creek at RR Bridge</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Coyote Creek east of Island Ponds</td>
<td>0.53</td>
<td>0.36</td>
</tr>
<tr>
<td>Charleston Slough</td>
<td>0.55</td>
<td>0.94</td>
</tr>
<tr>
<td>Mountain View Slough</td>
<td>0.21</td>
<td>0.82</td>
</tr>
<tr>
<td>Stevens Creek</td>
<td>0.11</td>
<td>0.23</td>
</tr>
<tr>
<td>Guadalupe Slough</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Alviso Slough</td>
<td>1.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Artesian Slough</td>
<td>0.48</td>
<td>0.60</td>
</tr>
<tr>
<td>Non-project Sloughs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corkscrew Slough</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Redwood Creek</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Westpoint Slough</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Mowry Slough</td>
<td>0.41</td>
<td>0.39</td>
</tr>
<tr>
<td>Plummer Slough</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>Newark Slough</td>
<td>0.86</td>
<td>0.84</td>
</tr>
</tbody>
</table>
4.3 Salinity

This section presents the model results with respect to salinity in the South Bay and the tidal sloughs under Alternative C, year 0, summer conditions. The model predictions are compared to baseline summer predictions in order to assess the impact of opening 90 percent of the ponds to tidal action.

Salinity in the South Bay is governed by the salinity in the Central Bay and exchange between South and Central Bays, freshwater inflows to South Bay, and evaporation. Generally, the South Bay is vertically well mixed (i.e. there is little tidally-averaged vertical salinity variation) with near oceanic salinities due to low freshwater inputs to the far South Bay in the summer and fall, and year round during dry years. The SBSP Restoration Project has the potential to alter the salinity regimes within the South Bay, as presented in the sections below.

Modeled salinity within the South Bay is highly dependent on the initial salinity condition, particularly due to the relatively long residence times within the South Bay under summer conditions. As discussed in Section 3.2.2, the initial salinity prescribed within the ponds was set by the salinity in the neighboring tidal sloughs, which approximates breaching the ponds in the spring when freshwater tributary inflows would have lowered salinities within the tidal sloughs and ponds, and the influence of high summer evaporation rates on salinity could be neglected. However, if breaching were to occur later in the summer or fall, salinity levels within the ponds would likely be higher at the time of breaching due to evaporation.

Upon initially opening the ponds to tidal action, the mass of lower salinity water in the Alviso ponds begins to exchange with the South Bay, introducing a significant source of freshwater and resulting in an apparent “freshening” of the far South Bay. This is expected to be a transient effect, and as the mass of freshwater works its way out of the South Bay, salinities in the South Bay would increase above baseline levels. However, quantification of this salinity increase would require running the hydrodynamic model for several months to a year, which is impractical due to the long run times required. The South Bay Model currently runs approximately three to four times faster than real time, therefore a one-year simulation would require three months of run time at a minimum.

The hydrodynamic model was run for an additional two months beyond the analysis period (July and August), and the increase in salinities in the far South Bay is evident as the system approaches equilibrium (Figure 4-52). The salinity results presented in this section, therefore, focus on the modeling results from August rather than the June analysis period.

4.3.1 South Bay

Under Alternative C, immediately after restoring 90-percent of the SBSP Restoration Project Area to tidal action, the far South Bay experiences a freshening effect based on the initial salinity conditions within the ponds, therefore the analysis in this section focuses on August conditions when the South Bay has approached equilibrium conditions. (Table 4-5) presents modeled salinity differences in the South Bay under both spring and neap conditions at LLW and HHW. Positive values in Table 4-5 represent an increase in salinities relative to the baseline, and negative values represent a decrease in salinities relative
to baseline conditions. At the San Mateo and Dumbarton Bridges, there are no significant differences in salinity when compared with baseline conditions (Figure 4-53 and Figure 4-54, respectively). This trend is expected to continue, and the SBSP Restoration Project is not expected to impact South Bay salinities north of the San Mateo Bridge.

At Channel Marker 17, salinity is initially depressed in response to the initial pond conditions. Due to the shorter residence times near Coyote Creek, equilibrium conditions are reached by August and salinities are slightly higher than baseline conditions at HHW and approximately 6 ppt higher at LLW (Figure 4-55). The salinity changes are highly correlated with the changes in water levels observed in the South Bay, with the largest changes occurring at LLW.

Figure 4-56 displays the salinities in the South Bay during spring conditions at HHW, representing peak salinity conditions during the August analysis period. As can be seen, little difference in peak South Bay salinities occurs under summer conditions with respect to Alternative C, year 0 conditions. The largest changes in salinity are confined to the tidal sloughs. Figure 4-57 displays South Bay salinities at LLW during spring tide conditions. At low water, the observed differences are higher downstream of the tidal sloughs and in the subtidal channels in the far South Bay.

Table 4-5. South Bay Salinity Differences under Alt C, Year 0, Summer

\[
\begin{array}{|l|c|c|c|c|}
\hline
\text{Station Name} & \text{Aug 27 LLW} & \text{Aug 27 HHW} & \text{Aug 19 LLW} & \text{Aug 19 HHW} \\
\hline
\text{San Mateo Bridge, Figure 4-53} & -0.1 & -0.1 & -0.1 & -0.1 \\
\text{Dumbarton Bridge, Figure 4-54} & -0.1 & -0.1 & 0.0 & -0.1 \\
\text{Channel Marker 17, Figure 4-55} & 6.4 & 0.1 & 6.5 & 0.3 \\
\hline
\end{array}
\]

4.3.2 Tidal Sloughs

As with the salinities in the South Bay, the initial conditions specified in the tidally-restored ponds have a transient effect on salinities. Salinities are initially depressed and then slowly trend towards equilibrium conditions. Table 4-6 shows the salinity difference under Alternative C for neap and spring tide conditions. Positive values represent an increase in salinities relative to the baseline, and negative values represent a decrease in salinities relative to baseline conditions.

In the Eden Landing pond complex, salinities in Old Alameda Creek (Figure 4-60 and Figure 4-61) and the upstream portion of the ACFCC (Figure 4-59) exhibit little change relative to baseline conditions. Downstream in ACFCC (Figure 4-58) exhibits a greater change in salinities which are highly correlated with the modeled changes in water levels (Figure 4-12). Peak salinities at HHW increase slightly relative to the baseline, while salinities at LLW show a marked increase greater than 13 ppt relative to baseline conditions in response to the increased tidal prism and greater mixing between the slough and the Bay.
Figure 4-62 and Figure 4-63 present the peak salinities in the Eden Landing pond complex during spring HHW and LLW conditions, respectively. As can be seen, the largest salinity changes are observed in the ACFCC and the South Bay directly downstream.

Within the tidal sloughs in the Alviso pond complex, the short-term freshening response is more evident. Salinities are initially depressed in response to the mass of freshwater entering the system from the breached ponds, and salinities steadily increase over the three-month simulation as equilibrium conditions are obtained. In the downstream reaches of Coyote Creek (Figure 4-64 and Figure 4-65), salinities increase 1 – 3 ppt on high water levels, with larger increases on the order of 5 – 9 ppt at low water. In the upstream reaches of Coyote Creek (Figure 4-66 and Figure 4-67) salinities increase with respect to baseline conditions on all phases of tide.

Both Alviso Slough and Guadalupe Slough experience a significant damping of the diurnal salinity range near the slough mouths (Figure 4-70 and Figure 4-72, respectively), with salinities at high water slightly above baseline conditions, while salinities at LLW are more than 10 ppt higher than baseline conditions. Upstream, salinities increase on all phases of the tide, with increases greater than 15 ppt occurring on spring tides (Figure 4-71 and Figure 4-73). These increases in salinity levels are correlated with the modeled changes in water levels. The salinities in the sloughs increase due to the increased mixing between the sloughs and the Bay.

Stevens Creek, Mountain View and Charleston Sloughs exhibit very little diurnal salinity variation under both baseline and Alternative C conditions due to the low summer tributary freshwater inflow contributions. These sloughs are also represented in the model at approximately twice their actual width; therefore, they are more hydraulically connected to the Bay in the model than they are in reality. The salinities are therefore highly correlated with Bay salinities and increase approximately 0 – 2 ppt above baseline conditions downstream (Figure 4-75, Figure 4-77 and Figure 4-79, respectively) and upstream (Figure 4-76, Figure 4-78 and Figure 4-80, respectively). Figure 4-81 and Figure 4-82 present the peak salinities in the Alviso pond complex during spring HHW and LLW conditions, respectively. In general, salinity increases are observed throughout the Alviso pond complex, with larger increased observed at LLW.

Salinities in Ravenswood Slough in the Ravenswood pond complex (Figure 4-83 and Figure 4-84) are similar to those seen at the Dumbarton Bridge (Figure 4-54) due to the close proximity of this station, and the minimal tributary freshwater contribution from Ravenswood Slough during the dry summer season. Figure 4-85 and Figure 4-86 present the peak salinities in the Ravenswood pond complex during spring HHW and LLW conditions, respectively. As can be seen, little difference is observed between baseline and Alternative C, year 0 conditions.
Table 4-6. Tidal Slough Salinity Differences under Alt C, Year 0, Summer

(Salinity differences in ppt. Aug 27 = neap tide, Aug 19 = spring tide)

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Aug 27 LLW</th>
<th>Aug 27 HHW</th>
<th>Aug 19 LLW</th>
<th>Aug 19 HHW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eden Landing pond complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACFCC Downstream, Figure 4-58</td>
<td>13.6</td>
<td>1.4</td>
<td>13.5</td>
<td>0.2</td>
</tr>
<tr>
<td>ACFCC Upstream, Figure 4-59</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>Old Alameda Creek Downstream, Figure 4-60</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Old Alameda Creek Upstream, Figure 4-61</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Alviso pond complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coyote Creek Power Tower, Figure 4-64</td>
<td>8.9</td>
<td>0.5</td>
<td>7.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Coyote Creek Railroad Bridge, Figure 4-65</td>
<td>4.3</td>
<td>2.1</td>
<td>5.7</td>
<td>1.2</td>
</tr>
<tr>
<td>Coyote Creek/Island Ponds, Figure 4-66</td>
<td>5.0</td>
<td>4.2</td>
<td>5.3</td>
<td>6.9</td>
</tr>
<tr>
<td>Coyote Creek Upstream, Figure 4-67</td>
<td>3.8</td>
<td>3.9</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Mud Slough Downstream, Figure 4-68</td>
<td>7.6</td>
<td>6.9</td>
<td>9.3</td>
<td>3.6</td>
</tr>
<tr>
<td>Mud Slough Upstream, Figure 4-69</td>
<td>5.1</td>
<td>5.4</td>
<td>4.9</td>
<td>4.4</td>
</tr>
<tr>
<td>Alviso Slough Downstream, Figure 4-70</td>
<td>10.3</td>
<td>1.0</td>
<td>11.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Alviso Slough Upstream, Figure 4-71</td>
<td>13.6</td>
<td>13.6</td>
<td>13.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Guadalupe Slough Downstream, Figure 4-72</td>
<td>7.9</td>
<td>1.1</td>
<td>8.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Guadalupe Slough Upstream, Figure 4-73</td>
<td>15.1</td>
<td>13.9</td>
<td>16.4</td>
<td>13.9</td>
</tr>
<tr>
<td>Moffett Channel, Figure 4-74</td>
<td>13.1</td>
<td>12.3</td>
<td>15.4</td>
<td>14.1</td>
</tr>
<tr>
<td>Stevens Creek Downstream, Figure 4-75</td>
<td>1.4</td>
<td>0.7</td>
<td>1.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Stevens Creek Upstream, Figure 4-76</td>
<td>0.7</td>
<td>0.6</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Mountain View Slough Downstream, Figure 4-77</td>
<td>0.3</td>
<td>0.2</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Mountain View Slough Upstream, Figure 4-78</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Charleston Slough Downstream, Figure 4-79</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Charleston Slough Upstream, Figure 4-80</td>
<td>1.0</td>
<td>0.2</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Ravenswood pond complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenswood Slough Downstream, Figure 4-83</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Ravenswood Slough Upstream, Figure 4-84</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

4.4 Circulation

Potential changes to South Bay circulation can be evaluated by examining current velocities at specific locations within the Bay and tidal sloughs, and by examining general changes to South Bay residual circulation. The most important factor influencing circulation patterns in South Bay is bathymetry (Cheng and Gartner 1985). At year 0, the only bathymetric change associated with the simulation is hydraulically connecting the ponds to the Bay and re-introducing tidal action. This, in itself, represents a large-scale bathymetric change.
4.4.1 Current Velocity

South Bay

In the South Bay, modeled velocities at the San Mateo and Dumbarton Bridges exhibit little change relative to baseline conditions. Table 4-7 shows the peak velocity magnitudes at the bridge and Channel Marker 17 stations under baseline and Alternative C conditions. Positive values indicate a higher modeled velocity under Alternative C, and negative values indicate a decrease in current velocity under Alternative C.

At the San Mateo Bridge (Figure 4-87), velocity magnitudes are slightly higher under Alternative C relative to baseline conditions, although the difference is relatively minor. At the Dumbarton Bridge (Figure 4-88), velocity magnitude differences are becoming more noticeable. This is expected as the tidally-restored areas are located on both sides of the bridge, with approximately 20 percent of the added potential tidal prism to the north of the Dumbarton Bridge, and 80 percent located to the south in the Alviso pond complex. Velocity magnitudes decrease slightly relative to baseline conditions. This decrease is due in part to the undersized nature of the tidal sloughs which restrict tidal exchange between the ponds and the Bay.

In the far South Bay at Channel Marker 17 (Figure 4-89), velocity magnitude increases are more pronounced relative to baseline conditions due to the close proximity of the Alviso pond complex and the location of the station in the main South Bay channel. Velocity magnitude increases of greater than 50 cm/s are predicted. The velocity magnitude increases are highest under strong ebb conditions; however, this dynamic is also a function of the undersized nature of the tidal sloughs connecting the ponds and the Bay. As the sloughs widen and deepen, the flood-ebb asymmetry in the velocity magnitude increase relative to baseline conditions is diminished, as is shown in the year 50 simulation presented in Section 7 when bathymetric change is included in the model simulations. The velocity increase at Channel Marker 17 is larger than observed at the Dumbarton Bridge due to the relative wetted cross-sectional area at LLW when velocities are highest. The main South Bay channel in the vicinity of the Channel Marker 17 is currently oversized, as is evident by its recent rate of infilling (Jaffe and Foxgrover 2006b). It is possible that the channel would be subject to scour post restoration, rather than continued deposition.

Figure 4-90 and Figure 4-91 depict velocity magnitudes within the South Bay under peak flood and peak ebb conditions under baseline and Alternative C conditions, as well as the difference between the two model predictions. The difference is strongest under spring ebb conditions near the mouths of the tidal sloughs and in the main South Bay channel. The differences under spring flood conditions are primarily seen near the mouths of the tidal sloughs.
Table 4-7. South Bay Peak Velocity Magnitude Comparisons: Alt C, Year 0, Summer vs. Baseline, Summer

(All velocities in cm/s)

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Baseline</th>
<th>Alt C</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Mateo Bridge, Figure 4-87</td>
<td>102</td>
<td>103</td>
<td>1</td>
</tr>
<tr>
<td>Dumbarton Bridge, Figure 4-88</td>
<td>34</td>
<td>31</td>
<td>-3</td>
</tr>
<tr>
<td>Channel Marker 17, Figure 4-89</td>
<td>67</td>
<td>119</td>
<td>52</td>
</tr>
</tbody>
</table>

Tidal Sloughs

In the South Bay, modeled velocities within the tidal sloughs experience significant changes in response to the restoration. The majority of the tidal sloughs exhibit a strong flood-ebb asymmetry in the velocity magnitude increases due to the undersized nature of the sloughs, with a larger increase in velocity magnitudes on ebb tide. This asymmetry is expected to dissipate as the sloughs widen and deepen in response to the increased tidal prism. Table 4-8 shows the peak velocity magnitudes at the downstream stations in the tidal sloughs under baseline and Alternative C conditions. Positive values indicate a higher modeled velocity under Alternative C, and negative values indicate a decrease in current velocity under Alternative C.

In the Eden Landing pond complex, velocity magnitudes in the ACFCC increase significantly in response to the increased tidal prism, with velocity magnitudes increasing by a factor of two on ebb and flood tides (Figure 4-92). This increase is due to the relatively large increase in tidal prism associated with the restored ponds. In Old Alameda Creek, velocity magnitudes increase on the order of 5 – 20 cm/s (Figure 4-93). This increase may be an underestimate due to the oversized representation of Old Alameda Creek in the model, as discussed in Section 2.3.5. Figure 4-94 and Figure 4-95 depict the tidal slough velocity magnitudes within the Eden Landing pond complex at both strong flood and strong ebb, respectively. At strong ebb, the largest differences are seen in the South Bay just beyond the slough mouth. At strong flood, the largest velocity magnitude differences relative to baseline conditions are seen in the downstream reaches of the sloughs.

In the Alviso pond complex, velocity magnitudes at the downstream stations increase relative to baseline conditions. The magnitude of the increase is correlated with the associated increase in upstream tidal prism. This can be seen in Coyote Creek at the Power Tower station which is downstream of breaches along Coyote Creek and Alviso Slough (Figure 4-96). Farther upstream in Coyote Creek, stations at the Railroad Bridge (Figure 4-97) and at the upstream edge of the Island Ponds (Figure 4-98) are located upstream of the majority of the pond breaches. At these stations, velocity magnitudes decrease relative to baseline conditions due to the large percentage of the flow captured by the ponds.

Velocity magnitudes are also predicted to decrease in Charleston Slough (Figure 4-105) because the model predicts that a portion of Charleston Slough’s existing and potential tidal prism is routed through the upstream breach to Pond A1 on Charleston Slough, through Pond A1, and into Mountain View Slough. This flow path could be prevented during the detailed design phase for Pond A1. As with Old
Alameda Creek, the velocity changes may be underestimated in Stevens Creek, Charleston Slough and Mountain View Slough due to the oversized representation of these sloughs in the model.

Figure 4-106 and Figure 4-107 depict the tidal slough velocity magnitudes within the Alviso pond complex at both strong flood and strong ebb, respectively. As with the Eden Landing pond complex, the largest differences under strong ebb conditions are seen in the far South Bay just beyond the slough mouth. At strong flood, the largest velocity magnitude differences relative to baseline conditions are seen in the downstream reaches of the tidal sloughs.

In the Ravenswood pond complex, peak velocity magnitudes increase by a factor of two with respect to baseline conditions under both flood and ebb conditions (Figure 4-108). Figure 4-109 and Figure 4-110 depict the tidal slough velocities within the Ravenswood pond complex at both strong flood and strong ebb, respectively. As with the other pond complexes, the largest differences under strong ebb conditions are seen in the far South Bay just beyond the slough mouth. At strong flood, the largest velocity magnitude differences relative to baseline conditions are seen in the downstream reach of the slough.

Table 4-8. Tidal Slough Peak Velocity Comparisons: Alt C, Year 0, Summer vs. Baseline, Summer

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Baseline</th>
<th>Alt C</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACFCC Downstream, Figure 4-92</td>
<td>45</td>
<td>105</td>
<td>60</td>
</tr>
<tr>
<td>Old Alameda Creek Downstream, Figure 4-93</td>
<td>53</td>
<td>72</td>
<td>19</td>
</tr>
<tr>
<td>Coyote Creek Power Tower, Figure 4-96</td>
<td>76</td>
<td>104</td>
<td>28</td>
</tr>
<tr>
<td>Coyote Creek Railroad Bridge, Figure 4-97</td>
<td>82</td>
<td>59</td>
<td>-23</td>
</tr>
<tr>
<td>Coyote Creek/Island Ponds, Figure 4-98</td>
<td>39</td>
<td>23</td>
<td>-16</td>
</tr>
<tr>
<td>Mud Slough Downstream, Figure 4-99</td>
<td>46</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>Alviso Slough Downstream, Figure 4-100</td>
<td>49</td>
<td>135</td>
<td>86</td>
</tr>
<tr>
<td>Guadalupe Slough Downstream, Figure 4-101</td>
<td>46</td>
<td>110</td>
<td>64</td>
</tr>
<tr>
<td>Moffett Channel, Figure 4-102</td>
<td>5</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>Stevens Creek Downstream, Figure 4-103</td>
<td>51</td>
<td>101</td>
<td>49</td>
</tr>
<tr>
<td>Mountain View Slough Downstream, Figure 4-104</td>
<td>49</td>
<td>75</td>
<td>26</td>
</tr>
<tr>
<td>Charleston Slough Downstream, Figure 4-105</td>
<td>77</td>
<td>64</td>
<td>-13</td>
</tr>
<tr>
<td>Ravenswood Slough Downstream, Figure 4-108</td>
<td>38</td>
<td>83</td>
<td>45</td>
</tr>
</tbody>
</table>

4.4.2 Residual Circulation

The total residual current observed in the South Bay is a product of tidally-driven residual currents, as well as wind-driven and density-driven circulation patterns. Density-driven currents are generally insignificant in the South Bay due to isohaline conditions (Walters and others 1985), and are not well-represented by the 2D depth-averaged model formulation. Wind-driven circulation in the main South Bay channel is also not well-represented in a 2D model, as the wind can drive a surface flow in the direction of the wind, and a return flow in the deep channel. In the South Bay, the wind-driven surface current is typically towards the south in the summer and fall, with a northward return flow deep in the main South Bay channel.
The residual currents presented here are a product of tidally-driven and wind-driven circulation. Residual circulation is the net advective transport of water and its constituents, which can be obtained by averaging the velocities at each point over one tidal cycle (Fischer and others 1979). Since no tidal cycle is identical to the next, the residual circulation will vary spatially and temporally. In order to compare the potential impact to residual circulation within the South Bay, the velocities at each point in the model were averaged at two hour intervals over two spring-neap tidal cycles, or approximately 29 days (from June 1, 2001 to June 29, 2001).

Figure 4-111 displays the 29-day residual circulation under summer baseline conditions. The residual currents observed in the model simulation agree with previous modeling exercises and field studies (Cheng and Casulli 1982; Gross 1997; Lucas 1997; Walters and others 1985). In general, there is a northward tidally-driven residual current along the eastern shoal, with a counter-clockwise gyre directly north of the San Mateo Bridge, and a clockwise gyre directly south of the San Bruno Shoal (Cheng and Casulli 1982; Lucas 1997; Walters and others 1985). The strongest residual current south of the San Mateo Bridge is in the main South Bay channel, with a southerly flow running from the San Mateo Bridge past the Dumbarton Bridge and into the far South Bay. A strong northerly residual current is also seen in Coyote Creek.

Figure 4-112 displays the 29-day residual circulation for Alternative C, with 90 percent of the ponds restored to tidal action, and Figure 4-113 displays the difference between the predicted residual circulation under baseline and Alternative C conditions (Alternative C minus baseline). Little to no change in residual circulation is observed north of the San Mateo Bridge, and little change is observed near the Eden Landing pond complex. The increased tidal prism from the Ravenswood pond complex is observed in the residual currents from Ravenswood Slough.

Figure 4-114 displays the 29-day residual circulation under summer baseline conditions for the far South Bay, and Figure 4-115 displays the same under Alternative C conditions, while Figure 4-116 displays the difference. The increased tidal prism associated with each tidal slough in the Alviso pond complex is evident. In general, the largest changes in residual circulation are seen in the far South Bay, as is expected by the comparatively large area of the Alviso pond complex and the number of deeply subsided ponds which contribute to the increase in tidal prism. The net-northward residual current is stronger under Alternative C than under baseline conditions.

4.5 Bed Shear Stress

Potential impacts to sediment erosion and deposition patterns are inferred based on comparisons of total bed shear stress both before and after tidal restoration, where total bed shear stress is a function of both tidal currents and locally-generated wind-waves. Cloern and others (1989) found that suspended sediment in the South Bay is weakly correlated with the advective flux, highlighting the importance of local resuspension. In the shallow regions of the South Bay where significant erosion has been shown to occur (Foxgrover and others 2004; Jaffe and Foxgrover 2006b), tidal forcing is generally weak and insufficient
to resuspend sediment, therefore locally-generated wind-waves are hypothesized to be the dominant factor affecting mudflat erosion. This hypothesis is further supported by Schoellhamer (1996), who found that suspended sediment concentrations in the South Bay are well correlated with wind and local wind-wave induced shear stress.

Tidal restoration has the potential to alter both tidally-driven bed shear stress by impacting current velocities, and wind-driven bed shear stress through alterations in water levels, as wind-driven bed shear stress is a function of water depth, wind speed and fetch (U.S. Army Corps of Engineers 1984). The DELFT3D model calculates the tidally-driven bed shear stress directly; however, the wind-wave-driven bed shear stress is not a specified model output. Instead, the model outputs the maximum wind-wave induced orbital velocity, which can be used to approximate the wind-wave-driven bed shear stress (Grant and Madsen 1979). The total bed shear stress can then be defined as the linear sum of the tidally-driven and wind-wave-driven bed shear stress (Grant and Madsen 1979; van Rijn 1993). This approximation is presented below and is for impact assessment purposes only. This approximation is not part of the DELFT3D model formulation.

\[
\tau_b = \tau_{bw} + \tau_{cw}
\]

(Grant and Madsen 1979; van Rijn 1993)

where \(\tau_b \) = total bed shear stress, \(\tau_{bw} \) = wind-driven bed shear stress, and \(\tau_{cw} \) = tidally-driven bed shear stress.

\[
\tau_{bw} = \frac{1}{2} \rho f_w u_b^2
\]

(Madsen and Wikramanayake 1991)

where \(\rho \) = density of water, \(f_w \) = wave friction factor, \(u_b \) = maximum near-bottom wave-induced orbital velocity.

Assuming \(f_w = 0.05 \) (Madsen and Wikramanayake 1991), and \(u_b \) and \(\tau_{bw} \) are given by output from the DELFT3D model at each grid cell and time step, the total bed shear stress can be estimated over the model domain.

Figure 4-5 displays the time period used to calculate the peak tidally-induced bed shear stress and the period used to calculate the peak combined wind-wave- and tidally-induced bed shear stress. The first period was chosen because the largest tidal velocities on both ebb and flood occur. The second period was chosen as strong summer winds (7 – 10 m/s) occur coincidentally with strong tides, and therefore the combined bed shear stress is at a maximum. These periods therefore coincide with maximum bed shear stresses and an increased potential for sediment erosion.

4.5.1 South Bay

Within the South Bay, the largest changes to the tidally-induced bed shear stress are seen in the subtidal channels and in the regions downstream of the tidal sloughs (Figure 4-117). The difference map shown on Figure 4-117 depicts red regions where the erosive potential increases (bed shear stresses are higher under Alternative C relative to baseline conditions), and the areas depicted in blue correspond to regions with a
potential for increased deposition. As the critical shear stresses for erosion are not well known within the
South Bay, and they vary spatially depending on the sediment characteristics and level of compaction of
the substrate, the red and blue areas are for illustrative purposes only and do not predict erosion or
deposition under Alternative C.

When the combined wind-wave- and tidally-induced shear stress is considered in the South Bay,
additional changes become apparent. MLLW is higher and MHHW is lower under Alternative C (Figure
4-9 and Figure 4-10, respectively). Because wind-wave-driven bed shear stress is a function of water
depth, and the erosive potential decreases with increasing water depth, the reduction in tidal amplitude
leads to a reduction in the total bed shear stresses in the shallow areas of the South Bay, including the
shallows in the far South Bay (Figure 4-123) and the eastern and western shoals north of the Dumbarton
Bridge (Figure 4-122 and Figure 4-124, respectively).

4.5.2 Tidal Sloughs

Within and adjacent to the Eden Landing pond complex (Figure 4-118), the maximum tidally-induced bed
shear stress is increased downstream of tidal breaches, corresponding to the increased tidal prism, and
decreased upstream of the tidal breaches because a portion of the flow upstream in the tidal slough under
baseline conditions is captured within the tidally-restored ponds under restored conditions. Within and
adjacent to the Alviso pond complex (Figure 4-119) and the Ravenswood pond complex (Figure 4-120),
the dynamic is similar to that observed in the Eden Landing pond complex. Tidally-induced bed shear
stresses increase downstream of tidal breaches and decrease upstream of tidal breaches.

The primary effect of the combined wind-wave- and tidally-induced shear stress is evident in the South
Bay, rather than in the tidal sloughs, as wind-induced waves require sufficient fetch to develop.
Figure 4-1

South Bay Salt Pond Restoration Project

South Bay Stations

Model output station
Tidal prism transect

San Mateo Bridge
Dumbarton Bridge
Channel Marker 17

PWA
Figure 4-2

South Bay Salt Pond Restoration Project
Eden Landing Stations
Figure 4-3

South Bay Salt Pond Restoration Project
Ravenswood Stations

PWA
South Bay Salt Pond Restoration Project

Alviso Stations

Figure 4-4

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
Figure 4-5

South Bay Salt Pond Restoration Project
Time Series Snapshot Points
Figure 4-6

South Bay Salt Pond Restoration Project
Water Levels, San Mateo Bridge, Alt C, Year 0, Summer
Figure 4-7

South Bay Salt Pond Restoration Project

Water Levels, Dumbarton Bridge, Alt C, Year 0, Summer
Figure 4-8

South Bay Salt Pond Restoration Project

Water Levels, Channel Marker 17, Alt C, Year 0, Summer
Note: Units shown are m-NAVD88, difference units are m
Note: Units shown are m-NAVD88, difference units are m

Figure 4-10

South Bay Salt Pond Restoration Project
Changes in MHHW, Alt C, Year 0, Summer
This figure shows the phase and amplitude of the M2 and K1 tidal components, calculated from harmonic analysis of the model. The green data points represent phase and amplitude values calculated by NOAA at the Bay Bridge (Pier 22), San Mateo Bridge, and Dumbarton Bridge.
Figure 4-12
South Bay Salt Pond Restoration Project
Water Levels, ACFCC Downstream, Alt C, Year 0, Summer
Figure 4-13

South Bay Salt Pond Restoration Project

Water Levels, ACFCC Upstream, Alt C, Year 0, Summer
Figure 4-14

South Bay Salt Pond Restoration Project

Water Levels, Old Alameda Creek Downstream, Alt C, Year 0, Summer
Figure 4-15

South Bay Salt Pond Restoration Project

Water Levels, Old Alameda Creek Upstream, Alt C, Year 0, Summer
Figure 4-16

South Bay Salt Pond Restoration Project

Water Levels, Coyote Creek Power Tower, Alt C, Year 0, Summer
Figure 4-17

South Bay Salt Pond Restoration Project

Water Levels, Coyote Creek Railroad Bridge, Alt C, Year 0, Summer
Figure 4-18

South Bay Salt Pond Restoration Project

Water Levels, Coyote Creek/Island Ponds, Year 0, Summer
Figure 4-19

South Bay Salt Pond Restoration Project

Water Levels, Coyote Creek Upstream, Year 0, Summer
Figure 4-20

South Bay Salt Pond Restoration Project

Water Levels, Mud Slough Downstream, Alt C, Year 0, Summer
(a) Mud Slough Upstream: June 1 - June 30, 2001

(b) Mud Slough Upstream: June 21 - June 28, 2001

Figure 4-21

South Bay Salt Pond Restoration Project

Water Levels, Mud Slough Upstream, Alt C, Year 0, Summer
Figure 4-22

South Bay Salt Pond Restoration Project

Water Levels, Alviso Slough Downstream, Alt C, Year 0, Summer
Figure 4-23

South Bay Salt Pond Restoration Project
Water Levels, Alviso Slough Upstream, Alt C, Year 0, Summer
Figure 4-24

South Bay Salt Pond Restoration Project

Water Levels, Guadalupe Slough Downstream, Alt C, Year 0, Summer
Figure 4-25

South Bay Salt Pond Restoration Project

Water Levels, Guadalupe Slough Upstream, Alt C, Year 0, Summer
figure 4-26

South Bay Salt Pond Restoration Project

Water Levels, Moffett Channel, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

Figure 4-27

South Bay Salt Pond Restoration Project

Water Levels, Steven Creek Downstream, Alt C, Year 0, Summer
Figure 4-28

South Bay Salt Pond Restoration Project

Water Levels, Stevens Creek Upstream, Alt C, Year 0, Summer
Figure 4-29

South Bay Salt Pond Restoration Project
Water Levels, Mountain View Slough Downstream, Alt C, Year 0, Summer
figure 4-30

South Bay Salt Pond Restoration Project

Water Levels, Mountain View Slough Upstream, Alt C, Year 0, Summer
(a) Charleston Slough Downstream: June 1 - June 30, 2001

(b) Charleston Slough Downstream: June 21 - June 28, 2001

Water Levels, Charleston Slough Downstream, Alt C, Year 0, Summer

Figure 4-31
Figure 4-32
South Bay Salt Pond Restoration Project
Water Levels, Charleston Slough Upstream, Alt C, Year 0, Summer
Figure 4-33

South Bay Salt Pond Restoration Project

Water Levels, Ravenswood Slough Downstream, Alt C, Year 0, Summer
Figure 4-34

South Bay Salt Pond Restoration Project

Water Levels, Ravenswood Slough Upstream, Alt C, Year 0, Summer
Figure 4-35

South Bay Salt Pond Restoration Project

Water Levels, Pond A20, Alt C, Year 0, Summer

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
Figure 4-36

South Bay Salt Pond Restoration Project

Water Levels, ELER North, Alt C, Year 0, Summer
Figure 4-37
South Bay Salt Pond Restoration Project
Water Levels, ELER South, Alt C, Year 0, Summer
Figure 4-38

South Bay Salt Pond Restoration Project

Water Levels, Pond E6B, Alt C, Year 0, Summer
Figure 4-39

South Bay Salt Pond Restoration Project

Water Levels, Pond A7, Alt C, Year 0, Summer
Figure 4-40

South Bay Salt Pond Restoration Project

Water Levels, Pond A8, Alt C, Year 0, Summer
Figure 4-41

South Bay Salt Pond Restoration Project

South Bay Tidal Prism Cross-Section Locations

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis
Figure 4-42

South Bay Salt Pond Restoration Project
Eden Landing Tidal Prism Cross-Section Locations
Figure 4-43
South Bay Salt Pond Restoration Project
Alviso Tidal Prism Cross-Section Locations
Ravenswood Tidal Prism Cross-Section Locations

South Bay Salt Pond Restoration Project

October 2006

Hydrodynamic Modeling Report: Alternatives Analysis

1751.03
\textit{Figure 4-45}

South Bay Salt Pond Restoration Project

Tidal Prism, San Mateo and Dumbarton Bridges, Alt C, Year 0, Summer
Figure 4-46

South Bay Salt Pond Restoration Project

Tidal Prism, Channel Marker 17 and Calaveras Point, Alt C, Year 0, Summer
Figure 4-47

South Bay Salt Pond Restoration Project

Tidal Prism, ACFCC and Old Alameda Creek, Alt C, Year 0, Summer
Figure 4-48

South Bay Salt Pond Restoration Project

Tidal Prism, Coyote Creek, Alt C, Year 0, Summer
Figure 4-50

South Bay Salt Pond Restoration Project

Tidal Prism, Stevens Creek and Mountain View Slough, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project

Tidal Prism, Charleston and Ravenswood Sloughs, Alt C, Year 0, Summer

Figure 4-51

South Bay Salt Pond Restoration Project

Hydrodynamic Modeling Report: Alternatives Analysis
Figure 4-52

South Bay Salt Pond Restoration Project
Salinity at Spring HHW Jun – Aug, Alt C, Year 0, Summer

Note: Units shown are PSU
Figure 4-53

South Bay Salt Pond Restoration Project
Salinity, San Mateo Bridge, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project

Salinity, Channel Marker 17, Alt C, Year 0, Summer

Figure 4-55

South Bay Salt Pond Restoration Project

Salinity, Channel Marker 17, Alt C, Year 0, Summer
Figure 4-56

South Bay Salt Pond Restoration Project
Salinity at Spring HHW, Alt C, Year 0, Summer

Note: Units shown are PSU
Figure 4-57
South Bay Salt Pond Restoration Project
Salinity at Spring LLW, Alt C, Year 0, Summer

Note: Units shown are PSU

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
Figure 4-58

South Bay Salt Pond Restoration Project

Salinity, ACFCC Downstream, Alt C, Year 0, Summer
Figure 4-59

South Bay Salt Pond Restoration Project
Salinity, ACFCC Upstream, Alt C, Year 0, Summer

(a) ACFCC Upstream: June 1 - September 1, 2001

(b) ACFCC Upstream: August 21 - August 28, 2001
South Bay Salt Pond Restoration Project
Salinity, Old Alameda Creek Downstream, Alt C, Year 0, Summer

Figure 4-60

South Bay Salt Pond Restoration Project
Salinity, Old Alameda Creek Downstream, Alt C, Year 0, Summer
Figure 4-61

South Bay Salt Pond Restoration Project

Salinity, Old Alameda Creek Upstream, Alt C, Year 0, Summer
Note: Units shown are PSU
Salinity at Spring LLW, Eden Landing, Alt C, Year 0, Summer

Note: Units shown are PSU

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
South Bay Salt Pond Restoration Project
Salinity, Coyote Creek Power Tower, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project

Hydrodynamic Modeling Report: Alternatives Analysis

October 2006

PWA

Salinity, Coyote Creek Railroad Bridge, Alt C, Year 0, Summer

Figure 4-65

South Bay Salt Pond Restoration Project

Figure 4-65

Salinity, Coyote Creek Railroad Bridge, Alt C, Year 0, Summer
Figure 4-66

South Bay Salt Pond Restoration Project

Salinity, Coyote Creek/Island Ponds, Year 0, Summer
Figure 4-67

South Bay Salt Pond Restoration Project
Salinity, Coyote Creek Upstream, Year 0, Summer
(a) Mud Slough Upstream: June 1 - September 1, 2001

(b) Mud Slough Upstream: August 21 - August 28, 2001

South Bay Salt Pond Restoration Project
Salinity, Mud Slough Upstream, Alt C, Year 0, Summer

PWA
Figure 4-70

South Bay Salt Pond Restoration Project

Salinity, Alviso Slough Downstream, Alt C, Year 0, Summer
Figure 4-71

South Bay Salt Pond Restoration Project

Salinity, Alviso Slough Upstream, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project

Salinity, Guadalupe Slough Downstream, Alt C, Year 0, Summer

Figure 4-72
South Bay Salt Pond Restoration Project
Salinity, Guadalupe Slough Upstream, Alt C, Year 0, Summer

Figure 4-73

Salinity, Guadalupe Slough Upstream, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project
Salinity, Moffett Channel, Alt C, Year 0, Summer

Figure 4-74
South Bay Salt Pond Restoration Project
Salinity, Steven Creek Downstream, Alt C, Year 0, Summer

Figure 4-75

South Bay Salt Pond Restoration Project
Salinity, Steven Creek Downstream, Alt C, Year 0, Summer
Figure 4-76

South Bay Salt Pond Restoration Project

Salinity, Stevens Creek Upstream, Alt C, Year 0, Summer

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
South Bay Salt Pond Restoration Project

Salinity, Mountain View Slough Downstream, Alt C, Year 0, Summer

Figure 4-77

South Bay Salt Pond Restoration Project

Salinity, Mountain View Slough Downstream, Alt C, Year 0, Summer
Figure 4-78

South Bay Salt Pond Restoration Project

Salinity, Mountain View Slough Upstream, Alt C, Year 0, Summer
South Bay Salt Pond Restoration Project

Salinity, Charleston Slough Downstream, Alt C, Year 0, Summer

Figure 4-79

South Bay Salt Pond Restoration Project

Salinity, Charleston Slough Downstream, Alt C, Year 0, Summer

PWA
Figure 4-80

South Bay Salt Pond Restoration Project

Salinity, Charleston Slough Upstream, Alt C, Year 0, Summer
Figure 4-81

South Bay Salt Pond Restoration Project

Salinity at Spring HHW, Alt C, Alviso, Year 0, Summer

Note: Units shown are PSU
Salinity at Spring LLW, Alt C, Alviso, Year 0, Summer

Note: Units shown are PSU

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
South Bay Salt Pond Restoration Project
Salinity, Ravenswood Slough Downstream, Ravenswood, Alt C, Year 0, Summer

Figure 4-83

South Bay Salt Pond Restoration Project

Salinity, Ravenswood Slough Downstream, Ravenswood, Alt C, Year 0, Summer
Figure 4-84

South Bay Salt Pond Restoration Project

Salinity, Ravenswood Slough Upstream, Ravenswood, Alt C, Year 0, Summer

(a) Ravenswood Slough Upstream: June 1 - September 1, 2001

(b) Ravenswood Slough Upstream: August 21 - August 28, 2001
South Bay Salt Pond Restoration Project

Salinity at Spring HHW, Ravenswood, Alt C, Year 0, Summer

Note: Units shown are PSU

Figure 4-85

South Bay Salt Pond Restoration Project

Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
Figure 4-86

South Bay Salt Pond Restoration Project
Salinity at Spring LLW, Ravenswood, Alt C, Year 0, Summer

Note: Units shown are PSU
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
Figure 4-90

South Bay Salt Pond Restoration Project
Velocity at Spring Flood, Alt C, Year 0, Summer

Note: Units shown are m/s
Figure 4-91

South Bay Salt Pond Restoration Project

Velocity at Spring Ebb, Alt C, Year 0, Summer

Note: Units shown are m/s
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.

Figure 4-92

South Bay Salt Pond Restoration Project

Velocity, ACFCC Downstream, Alt C, Year 0, Summer
The depth-averaged velocity is calculated as \(v = \left(u^2 + v^2 \right)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.
Note: Units shown are m/s

South Bay Salt Pond Restoration Project
Velocity at Spring Flood, Eden Landing, Alt C, Year 0, Summer
Figure 4-95

South Bay Salt Pond Restoration Project

Velocity at Spring Ebb, Eden Landing, Alt C, Year 0, Summer

Note: Units shown are m/s
The depth-averaged velocity is calculated as \(v = (u^2 + v^2)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as \(v = (u^2 + v^2)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.

Figure 4-98

South Bay Salt Pond Restoration Project
Velocity, Coyote Creek/Island Ponds, Year 0, Summer
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as \(v = (u^2 + v^2)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as \(v = (u^2 + v^2)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as \(v = \left(u^2 + v^2 \right)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.
The depth-averaged velocity is calculated as \(v = (u^2 + v^2)^{1/2} \), where \(u \) and \(v \) are the horizontal depth-averaged velocity components.
Note: Units shown are m/s

Figure 4-106

South Bay Salt Pond Restoration Project

Velocity at Spring Flood, Alviso, Alt C, Year 0, Summer
Note: Units shown are m/s
The depth-averaged velocity is calculated as $v = (u^2 + v^2)^{1/2}$, where u and v are the horizontal depth-averaged velocity components.
Note: Units shown are m/s

South Bay Salt Pond Restoration Project
Velocity at Spring Flood, Ravenswood, Alt C, Year 0, Summer

Figure 4-109
Figure 4-110
South Bay Salt Pond Restoration Project
Velocity at Spring Ebb, Ravenswood, Alt C, Year 0, Summer

Note: Units shown are m/s
South Bay Residual Circulation (cm/s)

$figure \ 4-111$

South Bay Salt Pond Restoration Project

South Bay Residual Circulation, Baseline, Summer

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis

October 2006
1751.03
Alternative C, Summer, Year 0

South Bay Residual Circulation (cm/s)

Figure 4-112

South Bay Salt Pond Restoration Project
South Bay Residual Circulation, Alt C, Year 0, Summer
Difference (Alt C - Baseline)

South Bay Residual Circulation Difference (cm/s)

Figure 4-113

South Bay Salt Pond Restoration Project

South Bay Residual Circulation, Difference, Year 0, Summer

PWA

South Bay Salt Pond Restoration Project

Hydrodynamic Modeling Report: Alternatives Analysis

October 2006

1751.03
Alternative C, Summer, Year 0

Far South Bay Residual Circulation (cm/s)

Figure 4-115

South Bay Salt Pond Restoration Project
Far South Bay Residual Circulation, Alt C, Year 0, Summer
Figure 4-117

South Bay Salt Pond Restoration Project

Tidal Bed Shear Stress, South Bay, Alt C, Year 0, Summer

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis
October 2006
1751.03
Figure 4-118

South Bay Salt Pond Restoration Project

Tidal Bed Shear Stress, Eden Landing, Alt C, Year 0, Summer
Figure 4-119

South Bay Salt Pond Restoration Project

Tidal Bed Shear Stress, Alviso, Alt C, Year 0, Summer
Figure 4-120

South Bay Salt Pond Restoration Project

Tidal Bed Shear Stress, Ravenswood, Alt C, Year 0, Summer
Figure 4-121

South Bay Salt Pond Restoration Project
Total Bed Shear Stress, South Bay, Alt C, Year 0, Summer

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis
October 2006
1751.03
Figure 4-122

South Bay Salt Pond Restoration Project
Total Bed Shear Stress, Eden Landing, Alt C, Year 0, Summer

South Bay Salt Pond Restoration Project
Hydrodynamic Modeling Report: Alternatives Analysis
October 2006
1751.03
Figure 4-123

South Bay Salt Pond Restoration Project

Total Bed Shear Stress, Alviso, Alt C, Year 0, Summer
Figure 4-124

South Bay Salt Pond Restoration Project

Total Bed Shear Stress, Ravenswood, Alt C, Year 0, Summer