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Identifying Limonium ramosissimum populations using a species distribution model 
and ground searches in tidal marshes of South San Francisco Bay 

 
Abstract: 
Early detection of invasive species is required for cost effective management of plant 
invasions, but finding nascent populations often requires extensive field surveys. Species 
distribution models provide a tool to focus field surveys to habitat likely to be invaded, and 
GPS tracking and mapping can be used to quantify and document search results. A logistic 
regression based-species distribution model was developed for an invasive wetland plant, 
Limonium ramosissimum, in South San Francisco Bay salt marshes, and the results ground 
truthed using field searches. While the model’s overall goodness of fit was not significant, 
many L. ramosissimum patches were found during ground searches and these were 
overwhelmingly located in cells the model predicts as moderate to high probability of 
potential L. ramosissimum habitat. Also, the model assigned high probability habitat with 
moderate accurately overall (Kappa = .68). These results suggest species distribution models 
are useful tools for identifying new invasions, even when the populations not in equilibrium 
are being modeled. This model could be refined using additional presence/absence data 
generated since model development and alternate predictor variables could be explored to 
improve model predictive power. 
 
Introduction: 
Wetlands are prone to plant species invasions because they aggregate seeds, nutrients, and are 
disturbed frequently (Zedler and Kercher 2004). However, San Francisco Bay’s salt marshes are 
subject to additional factors that promote the spread of invasive plants, including habitat 
fragmentation, urbanization, horticulture (With, 2004; Burt et al, 2007) and an increase in 
available space via habitat creation and restoration (Davis et al, 2000). For these reasons, invasive 
plant species management in San Francisco Bay is a necessity- particularly in restored marshes 
where initial low competition and resource availability create opportunities for non-native plant 
establishment.   
 
Once established, invasive wetland plant species may inhibit establishment of native plants, alter 
habitat structure, lower biodiversity, and change nutrient cycling (Zedler and Kercher 2004, 
Byers et al, 2002). Unchecked, invasive plants may lead to the development of alternative trophic 
relationships that may further damage native species if the invasive species is removed (Antonio 
and Meyerson, 2002) or legacy effects resulting in persistent, less desirable ecological states that 
resist restoration (Suding et al, 2004). For all these reasons, early identification and removal of 
harmful invasive species may be critical for successful restoration of native biota in marsh 
restoration projects. 
 
In 2007, several densely growing populations of an invasive plant, Algerian sea lavender 
(Limonium ramosissimum ssp proveniciale- Figure 1, page 2), were discovered in salt marshes in San 
Francisco Bay. A perennial, salt-tolerant forb of Mediterranean origin, L. ramosissimum ssp 
provenciale has spread to marshes and tidal lagoons in southern California, from San Diego to 
Santa Barbara (Archabld and Boyer, unpublished). At Carpenteria Marsh in Santa Barbara, L. 
ramosissimum displays invasive characteristics including broad salinity tolerance, prolific seed 
production and the ability to compete with native plants (Page et al, 2007).  
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D. co-occuring at lower elevations with 
hybrid spartina alterniflora x foliosa. 

A. growing with natives Grendelia 
stricta and Sarcocornia pacifica. 

B. displaying high 
marsh zonation. 

C. flowering above Jaumea carnosa. 

F. tolerating a hyper-saline bare patch. E. setting seed near Distichlis spicata. 

Figure 1: Limonium ramosissimum ssp provenciale at Coyote Pt. Marina, San Mateo in July 
(A,B,C,D) and in August (E), 2008; at Sanchez Marsh, Burlingame (F). 
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Figure 3: L .ramisissimum population at Sanchez Marsh in Burlingame is located at the site of a 
1987 wetland mitigation project.  

Figure 2: Known locations of Limonium ramosissimum in San Francisco Bay prior to this 
study.  
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Prior invasion history is a key indicator of future invasion potential (Kolar and Lodge, 2001) and 
L. ramosissimum’s invasion history in California and in San Francisco Bay indicates the plant 
poses a threat to natural and restored tidal marsh habitat. Prior to this study, L. ramosissimum had 
been found in 12 marshes (Figure 2, page 3) in South San Francisco Bay covering a total of .8 
hectares and most of these marshes have a history of either restoration or disturbance. The 
largest, densest known population is at a restored marsh, Sanchez Creek Marsh (Burlingame, 
CA) where L. ramosissimum densely covers approx. 45% of the marsh habitat created in a 1987 
mitigation project (Figure 3, page 3). However, the total extent of the L. ramosissimum invasion in 
San Francisco Bay is unknown. 
 
Planning for the conversion of approximately 15,000 acres of former salt ponds to tidal marsh 
and other habitats in San Francisco Bay, the South Bay Salt Pond Restoration Project issued a 
call for scientific research proposals in 2008 to address restoration goals and challenges- among 
them, the reduction of non-native plant species. This project was funded with the goal of both 
identifying L. ramosissimum populations in S. SF Bay, and developing detection methods for 
future monitoring. Mapping and monitoring L. ramosissimum populations is part of a larger 
invasive species management plan being carried out by the U.S. Fish and Wildlife Service at the 
Don Edwards Wildlife Refuge, the major property owner of SBSP Project lands. This paper 
provides an example and case study of how predictive habitat distribution models combined 
with ground searches provide a means to map invasive plants. 
 
Predictive habitat distribution models are frequently used to predict a species’ actual or 
potential distribution based on occurrence data and underlying environmental variables 
(Franklin, 1995, Guisan and Zimmerman, 2000), and many of these models have focused on 
invasive species (Václavík and Meentemeyer, 2007). Among the most widely used models for 
prediction is logistic regression, a form of the Generalized Linear Model used when the 
dependent variable is binary, such as presence/absence of an invasive species, and 
independent variables are relevant environmental predictors of species presence. The output 
of this model is the log odds of the binary event occurring which, using GIS, is converted to 
a spatially explicit probability of occurrence between 0 and 1 for every grid cell in the model. 
GIS is used to in this approach to generate and sample environmental variables based on 
species occurrence data and to apply the resulting model to generate a predictive map.  
 
Predictive distribution models are based on the niche concept and assume that species 
occurrence data represents a population that has realized its fundamental niche and is in 
psuedoequilibrium (Guisan, 2000). Predictive habitat distribution models violate this 
assumption, particularly when an invasive species is at an early stage in the invasion process- 
as is the case for L. ramosissimum. In spite of this violation, many studies have used logistic 
regression to predict the potential range of invasive plant species, including Lepidium latifolium 
in South San Francisco Bay (Vanderhoof et al, 2009). However, because of the violation of 
this basic assumption, these models are best seen as an approximation of future distribution, 
not actual or current distribution (Holcombe et al, 2007, Vaclavick and Meentemeyer, 2009). 
  
The goal of this model, therefore, is to develop a probabilistic map of habitat L. ramosissimum 
could invade in South San Francisco Bay marshes, not a predictive model of where founding 
populations of L. ramosissimum have established. By identifying habitats likely to be invaded, 
the model can be used to limit the scope of field searches and aid in early detection. The 
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goals of conducting field searches using this model were both to identify L. ramosissimum 
populations and to evaluate the model’s accuracy. 
 
 
Methods: 
Study Area: 
The model predicts probability of L. ramosissimum habitat at marshes and shoreline in South 
San Francisco Bay in and around the South Bay Salt Pond Restoration Project. This model’s 
extent is limited to regions with Lidar data collected from a 2004 survey (Foxgrover, 2005) 
which is a key component of predictive layer in the model. 
 

 
Figure 4: Model extent. 
 
Model Approach: 
The key steps involved in creating this model were:  
1. Define and generate relevant environmental predictor variables using ArcGIS.  
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2. Using ArcGIS, sample predictor variables in and out of known L. ramosissimum 
populations.  
3. In SPSS, fit the logistic regression model to the sampled data.  
4. Apply the model in ArcGIS to predict potential L. ramosissimum habitat in the South Bay.   
5. Conduct surveys to ground truth model predictions. 
6. Based on survey results, generate accuracy assessment. 
 
Step 1- Predictor variables and data acquisition: 
All the predictor variables used in the model were chosen to replace a number of known or 
theorized ecological drivers of L. ramosissimum’s abundance and distribution in a simple way 
(Guisan et al, 1999) and are discussed below. All variables were created as rasters (GRID 
files) in ArcMap 9.3. The predictor variables used in the model and their sources are shown 
in Table 1.  
 
Table 1: Predictor variables used in logistic regression model and their sources. 
Predictor variable Source(s) 

Elevation relative to average high 
tides 

2004 South Bay Lidar dataset and interpolated 
NOAA tidal station data 

Kernel density of 2009 Spartina 
hybrid point locations 

Draft 2009 Spartina point locations from The 
Invasive Spartina Project. 

Distance to high marsh habitat 
 

Modern Baylands shapefile acquired from San 
Francisco Estuary Institute 

Distance to water’s edge 
 

Heads -up digitization of the bay and channel edges 

Topographic slope and aspect Derived from LIDAR based digital elevation model 
 
Elevation relative to average high tides: 
Species distribution models rely on including environmental predictor variables that 
structure species distributions. Salt marsh species exhibit species distributions which are a 
function of, among other variables, tidal inundation (Chapman, 1934). Because marshes 
experience progressively higher tides in the South Bay relative to a fixed geodetic datum, and 
because marsh species also shift vertically up in response to these higher tides, a new variable 
was created to normalize elevation data to a measure of average high tides. The purpose of 
this “elevation relative to average high tides” layer in this model, therefore, is to provide a 
predictive environmental variable with less variability than elevation alone relative to L. 
ramosissimum’s vertical distribution.  
 
Elevation data: 
Elevation data was derived from the South San Francisco Bay 2004 Topographic Lidar data 
set (Foxgrover and Jaffee, 2005). The data was used to create a 1-meter resolution digital 
elevation model (DEM) for analysis. Using ArcMap 9.3, Lidar ground return data was 
converted from xyz lattice files to multipoint features. Average point spacing was set to 1.2 
meters. Multipoint features were converted to raster files, projected horizontally in NAD 
1983 UTM Zone 10 and vertically in NAVD88. 
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Tidal data: 
To obtain rasters of average high tides, values of predicted mean tide, mean spring range and 
mean range from 39 primary and secondary tidal stations in the South Bay were exported 
from http://tidesandcurrents.noaa.gov/tides09/tab2wc1a.html. These values were converted 
to shapefiles, and transformed from feet relative to the Mean Lower Low Water (MLLW) 
tidal datum to meters NAVD88 using NOAA’s Vertical Datum Transformation java-script 
based tool (VDatum). 
 
ArcGIS was then used to interpolate between values of mean tide, mean spring range and 
mean range from tidal stations. The regularized spline interpolator was selected (cell size 
=10m, weight = .5, number of points = 5). Spline creates a surface that minimizes curvature 
but that passes through the source points and is often the best method for representing 
smoothly varying variables (Childs, 2004).  
 
The resulting rasters were then combined to an unconventional proxy for average high tides 
using raster calculator in ArcGIS. The average high tide raster was created using the follow 
raster calculation: 
 
Average high tide raster = mean tide raster + ½ (average (spring tidal range raster + 
mean tidal range raster))  
 
This proxy for average high tides was improvised for this model. It was chosen to capture 
both average tide heights and include the effect of the higher spring tides. One weakness to 
this data layer is that systematic errors affect Vdatum’s accuracy in the S. Bay. Also, 
predicted average tides are likely to have higher error than measured tides. An alternative 
approach which relies on mean higher high water (MHHW) tidal datum measurements is 
described in a companion paper, “Merging tidal datums and Lidar for Species Distribution 
Modeling in South San Francisco Bay”.  
 

 
 

Average 
high tide 

raster 

Figure 5: Interpolated average high 
tide raster generated for this 
model. L. ramosissimum populations 
prior to model generation within 
the model extent are shown. 

Combining Elevation relative to average high tides as a predictor variable: 
A new predictor variable was created by subtracting the Lidar-based DEM from the average 
high tide raster using raster calculator in ArcGIS. The resulting variable is the elevation value 
in meters relative to average high tides (Figure 6, page 8). 
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Kernal Density of 2009 Spartina hybrid locations 
A species’ ability to deliver high propagule pressure to new locations is a key factor 
predicting invasion potential (Kolar and Lodge, 2001). Experiments have shown L. 
ramosissimum seeds can float for over two weeks in bay water then germinate (Archbald and 
Boyer, unpublished), indicating seeds have the potential for long distance dispersal events. 
However, where seeds are likely to travel is from existing source populations is unknown. To 
address this, based on the assumption that water current and wind patterns drive dispersal in 
San Francisco Bay, and that these forces act similarly on floating L. ramosissimum seeds and 
floating invasive Spartina seeds, a raster quantifying the densities of 2009 Spartina hybrid 
point locations using the quadratic kernel function (Silverman, 1986) in ArcMap was used as 
a predictor variable (Figure 7). 
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Figure 6: Output showing the 
variable “elevation relative to 
average high tide”. In a the 
linear profile of this layer, (red) 
marsh elevation (light grey) 
hovers just above 0 m- which 
corresponds to where average 
high tide equals marsh 
elevation. Elevation drops to 
about -2 m on adjacent 
mudflats (dark grey).  

Figure 7: To identify regions where seeds 
may concentrate, the kernel density 
function was used with 2009 Spartina hybrid 
locations using an 800m search radius and 
results were normalized on a 0-1 scale. The 
results quantify point densities. 
 



 9 

Distance to high marsh habitat 
L. ramosissimum has exclusively invaded high marsh habitat where it has been observed. 
Therefore, if additional populations exist in the South Bay marshes, and they are spreading 
seeds to nearby habitat, distance from large high marsh areas may be a factor in predicting 
spread. To capture this variable, a Euclidean distance raster was calculated based on 
polygons delineating high marsh habitat from the “modern habitats” shapefile distributed by 
San Francisco Estuary Institute in ArcGIS and the resulting raster used as a predictor 
variable.  
 
Water’s edge: 
Distance to water’s edge was included as a variable to account for dispersal at the marsh 
scale. Vegetation traps seeds and the probability of seed capture may be a function of 
distance from the water’s edge. Also, disturbance at the water’s edge is often high due to 
wave action, geese grazing and seal haul out sites, and disturbance is strongly correlated with 
establishment of many invasive species.  
 
To create this variable, shoreline and tidal channels 5 meters in width and greater were 
“heads up digitized” using ArcMap from a combination of ESRI ArcGIS Online World 
User Imagery, IKONOS 2009 imagery, and the 2004 South Bay Lidar Dataset in ArcMap. 
The bay’s edge was defined as the transition zone between water or mudflat and marsh 
vegetation or riprap. The water’s edge variable was then created using the Euclidean distance 
function to the resulting shapefile in ArcMap. 
 

 
Topographic variables 
Slope and aspect are indirect variables relating to resource and stress gradients. Increased 
slopes may be associated with higher 02 availability for plants as slopes may drain more 
rapidly after high tide events then flat surfaces. Aspect effects orientation relative to wind, 
wave action and light. Topographic variables were derived from 1m Lidar-based DEM in 
ArcMap using the Spatial Analyst extension. 
 

Figure 8: Shapefile 
used to create the 
water’s edge 
variable 
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Step 2- Sampling predictor variables for logistic regression:  
Samples of predictor variables from searched locations where L. ramosissimum is and is not 
present are required for logistic regression analysis. Marshes and shoreline were searched in 
2007-2008 from the San Francisco Airport to Beach Park, Foster City (Figure 9, page 11) 
and L. ramosissimum populations mapped using a handheld Trimble Geo-XH GPS with sub-
meter accuracy. Patches larger than 1m2 were mapped as polygons and smaller patches were 
mapped as points. In ArcMap the random sample tool (Hawth’s Tools) was used to create 
three sample points per mapped polygon. These points were merged with mapped L. 
ramosissimum point locations for a total of 328 sample points from 5 geographically distinct 
populations.  
 
To sample L. ramosissimum absence locations in the same region, a “mask” was first created 
to limit the vertical range to draw samples from. This was done to focus absence sample 
points in regions relevant to potential ASL establishment (ie not underwater or far above the 
intertidal). To do this L. ramosissimum’s vertical range was compared to tidal datums and a 
maximum possible range was specified as 1.25m above average high tides and the minimum 
elevation was set to .2 m below average high tides (Figure 10, page 11) using raster 
calculator. Using this mask and excluding polygon locations with L. ramosissimum, 328 
absence samples were generated using the random sample tool.   
 
While power analysis was not conducted, power (the probability of not retaining a false null 
hypothesis) is expected to increase with balanced sample designs and when prevalence rates 
are small (Hsieh et al, 1998) and “rules of thumb” for sample sizes range from 
recommending the dependent variable have at least 10 samples per model parameter 
(Peduzzi et al., 1996) to 30 samples per model parameter (Pedhazur, 1997). Since this model 
includes 6 parameters, a conservative estimate is a minimum of 180 samples are required. 
This sampling design includes 328 samples in vs out of ASL populations, though since L. 
ramosissimum patch polygons were sampled with three points each, some samples from small 
polygons are likely pseudoreplicates. 
 
Using these 328 sample points in and out of ASL populations, values for all six predictor 
variables were extracted from the raster layers using the sample tool in ArcMap, then 
transferred to SPSS for logistic regression analysis. All sample points were used for model 
fitting since an independent validation step via ground searches was planned. 
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Figure 9: Region searched for ASL in 07-08 (red) with populations displayed (pink). 
 

 
Figure 10: Vertical range of the sample analysis mask (red) relative to ASL’s vertical range. 
 
Step 3- Logistic regression analysis: 
Logistic regression was carried out in SPSS. Independent variables were entered using 
backwards step-wise analysis using a significance value <= .05 to include individual variables 
in the model. Hosmer and Lemeshow tests were used to test for overall fit of binary logistic 
regression model and the Nagelkerke R2 test was applied to measure model effect size. No 
test for spatial autocorrelation (Moran’s I), covariates, or log likelihood ratio was conducted.  
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Step 4- Predict potential L. ramosissimum habitat in the South Bay: 
Using raster calculator in GIS, coefficients which significantly improved model performance 
during stepwise model fitting in SPSS were used to calculate probability of L. ramosissimum 
habitat and a 1 m cell by cell basis using the following equations (Garson, 2006): 
 
1.  z = 3.437 + (-.004 * [Distance to high marsh])  + ( - 1.588  * [average high tide 

relative to elevation])  + ( - 2.478  *  [Spartina kernel])  + ( - .027  *  [Distance to 
water’s edge]) 

 
2.  odds = exp(z) 
 
3.  probability = odds/1 + odds  
 
Step 5- Ground truth model predictions:  
Model results were uploaded onto a handheld Trimble Geo-XH GPS and displayed as a 
background to guide field searches of marshes and shoreline across the model extent. 18 
days of field searches were carried out including 11 days of boat based searches and 7 days 
of levy based searches. Searches were carried out in order to cover as much high probability 
habitat as possible. En route to these locations, significant low and 0 probability habitat was 
searched, enabling an accuracy assessment of the model.  
 
Boat based searches began approximately two hours before high tide and ended 
approximately two hours after high tide. All boat paths were recorded by GPS. Searches at 
high tide enabled high marsh habitat to be seen from the boat. Boat based searches were 
particularly useful because levies are not passable after rain, and because clapper rail breeding 
season prevented marsh access on foot for much of the time dedicated to ground truthing. 
Levy searches were conducted on foot or by slow moving car.  
 
Boat and levy searches were carried out by traveling linear routes- either long shoreline via 
boat or along levy or shoreline via foot or car. Marsh approximately 20 meters from the 
search location was visually scanned for L. ramosissimum. It was judged that any large L. 
ramosissimum patch would be seen within this distance, but small seedlings would be virtually 
impossible to see in dense canopy. 
 
Periodically, in both haphazard locations and where wrack, bare ground or other disturbance 
indicators were seen, more detailed searches were conducted. If the search was conducted by 
boat, the vessel was nosed against the high marsh and a 30 second search was carried out 
with bare eyes and binoculars from the bow of the boat. In each location, a GPS position 
and an estimate of the number of meters of marsh habitat visible from the search point was 
recorded. If the search was conducted from a car, the car was stopped and the same 
procedure used.  
 
When found, L. ramosissimum populations were mapped using the handheld GPS at the patch 
scale and percent cover, flowering, and co-occurring species, were recorded. 
 
After searches are complete, search locations and search paths were differentially corrected 
to improve accuracy and transferred to shapefiles. 
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In order to evaluate the amount of likely habitat that has been searched, in ArcMap, 20 
meter radius buffers were added to search paths recorded with GPS, and survey point 
locations were buffered by the amount of visible marsh recorded at each search point. These 
buffered search locations were then used to identify how many cells, at what probability, 
were searched. 
 

 
Figure 11: Searching shoreline by boat (left). Survey points and search paths were displayed 
on model results to quantify extent searched (right). 
 
Step 6- Accuracy assessment: 
Two model accuracy assessments were conducted.  
 
First, an assessment was made to determine how accurately the model assigned probability 
of L. ramosissimum habitat to locations where searches found L. ramosissimum. To do this, 
model probability values were extracted from all L. ramosissimum point and patch locations 
not used for model generation at one meter resolution and compared against a random 
sample of model values outside of L. ramosissimum populations. 
 
The second model assessment method tested the degree to which the model accurately 
assigned “high probability of L. ramosissimum habitat” versus “low probability of L. 
ramosissimum habitat”. To test this, model probabilities of .7 – .97 were considered high 
probability, and 0-.3 considered low probability. 25 random points were generated within 
each of these two probability ranges. Random point locations were then visually assessed 
using high resolution aerial imagery (NAIP 2009 and Google maps) to determine the 
accuracy of their assignment. If a sample point was located in mid-marsh, high-marsh or 
transitional upland, it was considered high probability of L. ramosissimum habitat. If it was in 
low marsh, upland or water, it was considered low probability of L. ramosissimum habitat.  
 
The second assessment allowed a Cohen’s Kappa statistic to be generated, providing an 
accuracy rating for the model’s probabilistic classification of L. ramosissimum habitat. 
 
Results  
Predictor variables and logistic regression model: 
Results of backwards step-wise logistic regression found four predictor variables significantly 
improved the performance of the model: Spartina kernel density, elevation relative to average 



 14 

high tides, distance to high marsh, and distance to water’s edge (Table 2). The topographic 
variables slope and aspect did not improve the model’s performance and were rejected.  
 
The logistic regression equivalent of an R2 value, Nagelkerke R2 = .596, indicating about 
60% of the variation in the dependent variable is explained by the model. The overall test of 
how well the model fits the data, the Hosmer and Lemeshow goodness-of-fit test, indicated 
the model does not fit the data at an acceptable level (statistic < .05). 
 
Table 2: Significant variables included in the model. 
Significant variables Coefficient SE Significance 

Elevation relative to average high tides -1.588 .334 < .001 
Kernel density of 2009 Spartina hybrid 
point locations 

-2.478 .933  .008 

Distance to high marsh habitat -.004 .000 < .001 
Distance to water’s edge -.027 .003 < .001 
constant 3.473 .349 < .001 
 
These coefficients were then used to generate a probabilistic map of L. ramosissimum 
potential habitat. 
 
Model output of potential L. ramosissimum habitat: 
Applying the logistic regression coefficients in ArcGIS produced a raster layer of spatially 
explicit probabilities of potential L. ramosissimum habitat across the model extent (Figure 12, 
page 15). The extent of potential habitat by probability is summarized in Table 3. 
 
Table 3: Areal extent of potential L. ramosissimum habitat      
Total model extent: 110.9 km2 
Area with > .75 probability 16.7 km2 
Area with > .9 probability 7.12 km2 
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Figure 12: Full extent of logistic regression model of potential L. ramosissimum (Algerian sea 
lavender, or ASL) habitat. 
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Figure 13: Model results at Ravenswood. 
 

 
Figure 14: Model results at Alviso. 
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Figure 15: Model results at Eden’s Landing. 
 
Survey results: 
18 days of boat and levy surveys resulted in 2.2 km2 of marsh and shoreline searched within 
the model extent (Figure 16, page 18). Search extent is summarized by probability of 
potential L. ramosissimum habitat in Table 4. 
 
Table 4: Model extent searched 
Total area searched in model 2.2 km2  (2% of total model extent) 
Area searched with >.75 probability 1.4 km2  (8% of >.75 extent) 
Area searched with > .9 probability .9 km2   (13% of > .9 extent) 
 
Within the search extent, L. ramosissimum populations were found in seven distinct locations 
(Figure 16, page 18). Three of these populations were small (one to a few dozen plants) and 
were removed after mapping. Three populations are considerably larger and were not 
removed. The L. ramosissimum population at Plummer Creek Marsh has not been field 
mapped and was indentified through personal communication with Invasive Spartina Project 
staff member, Whitney Thornton. Some L. ramosissimum patches at Ideal Mash and Whale’s 
Tail were previously mapped in 2008 but searches led to mapping of several new patches at 
each marsh. 
 
All L. ramosissimum population locations within the model extent are shown against 
background imagery and relative to model results and search locations in Figures 17- 30. All 
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known L. ramosissimum populations in San Francisco Bay are shown in Figure 31, page 33 
and population sizes in Table 5, page 34.  
 

 
Figure 16: Map of L. ramosissimum presence and absence within the model extent.   
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Figure 17 
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 22 

 
Figure 20 
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Figure 30 
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Figure 31: Known locations of L. ramosissimum ssp provenciale in San Francisco Bay. 
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Table 5: Relative sizes (determined by GPS mapping) of L. ramosissimum ssp provenciale 
populations in San Francisco Bay. 
Location Area (m2) 
Sausalito 1 
Corte Madera 1 
Yosemite Slough 2 
Candlestick Point State Park 1 
Pier 94 1 
Oyster Point Marina 1592 
SFO 3859 
Sanchez Marsh 4361 
N. Coyote Point 449 
Coyote Point Marina 2300 
Albany Bulb 32 
Seal Slough 519 
Beach Park 13 
Bird Island 1 
Greco Island 1 
Outside R1 2 
Whales Tail 36 
Ideal Marsh 239 
Coyote Creek Lagoon 1117 
Plummer Restoration Marsh unknown 
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Model accuracy assessment 
To determine how accurately the model assigned high probability of L. ramosissimum habitat 
to locations where L. ramosissimum was found during the survey, model probability values 
were extracted from all L. ramosissimum point and patch locations not used for model 
generation at one meter resolution. Results (Figure 32) show that the model assigned an 
average probability of .77 to locations the plant was found versus an average probability of 
.24 in random locations.   
 

 
Figure 32: Cells in the model where L. ramosissimum was mapped had an average probability 
of .77 versus an average probability of .24 in random locations. 
 
The second model assessment method, a Cohen’s Kappa statistic, quantified the accuracy 
which the model assigned “high probability of L. ramosissimum habitat” versus “low 
probability of L. ramosissimum habitat”. The required confusion matrix and calculations are 
shown below: 
 
Confusion matrix: 

 0 -.3 probability .7 - .97 probability Total 
Not L. ramosissimum habitat 19 cells 2 cells 25 cells 
L. ramosissimum habitat 6 cells 23 cells 25 cells 
Total 25 cells 25 cells 50 cells 
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Discussion: 
 
The model: 
The relative size of the coefficients associated with each significant predictor variable 
indicates the degree of effect the variable has on the probability of L. ramosissimum habitat. 
Larger coefficients change the probability of L. ramosissimum habitat more rapidly assuming 
the predictor variables have equal ranges. In this model, all coefficients were negative, 
meaning as predictor variable values increase, the probability of L. ramosissimum habitat 
decreases. However, this leads to different interpretations for each independent variable.  
 
In the case of the distance to Spartina variable, which had the largest negative coefficient, 
probability of L. ramosissimum habitat decreases rapidly as the variable value increases at 
closer distances to Spartina locations, indicating L. ramosissimum is negatively correlated with 
Spartina locations, the opposite of the hypothesized relationship. This result indicates that 
dispersal events are probably not driving distribution patterns similarly for both species and 
this variable could be left out of future model iterations.    
 
The next largest coefficient, elevation relative to high tides, indicates that the probability of 
L. ramosissimum habitat increases with lower elevations relative to average tides. This means 
that while probability of L. ramosissimum habitat increases as cell values decrease from upland 
elevations to high marsh elevations (as hypothesized), probabilities continue to increase at 
negative, low marsh elevations, which runs counter to L. ramosissimum’s ecology. This mixed 
result may have the effect that the model is more likely to over predict habitat at low marsh 
elevations, than at upland elevations.    
 
The two smallest coefficients were distance to water’s edge and distance to high marsh. In 
both cases, variable values increase with greater distances from these features, lowering 
probability of L. ramosissimum habitat further from water’s edge and high marsh, as predicted. 
While the sizes of these coefficients are small, visual interpretation of model results suggest 
that distance to water’s edge is a primary variable driving L. ramosissimum habitat probability. 
This suggests that the size of coefficients alone does not determine the importance of an 
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independent variable, but also the range of the variable itself. Distance to Spartina values 
range from 0 to 1 while distance to water’s edge ranges from 0 to approx 1000 (meters from 
water). The small coefficient associated with distance to water’s edge may strongly drive L. 
ramosissimum habitat probabilities because of this larger range.  
 
The finding that distance to water’s edge appears to be strong driver of L. ramosissimum 
habitat likelihood is supported by field observations. At Ideal Marsh, for example, L. 
ramosissimum is found along the slight rise in marsh elevation at the bayward edge of the 
marsh (Figure 33). Marsh elevations decrease landward from the water’s edge, increasing 
marsh inundation and limiting L. ramosissimum spread into the marsh plain. At Coyote Creek 
Lagoon, distance to water’s edge is also an effective predictor by itself, though for different 
reasons. High marsh habitat in this case is located close to the water’s edge, but levies 
preclude L. ramosissimum growing further shoreward away from the water’s edge.   
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The overall test of how well the model fits the data, the Hosmer and Lemeshow goodness-
of-fit test, indicates the model does not fit the data at an acceptable level (statistic < .05). 
This may be a function of the fact that the invasion has not reached equilibrium. As a result, 
many locations outside of current L. ramosissimum population locations sampled for analysis 
as absence points are actually suitable for invasion. In those locations, the variable values are 
similar to invaded areas leading to a poor overall goodness of fit. Rerunning this model with 
a larger sample size, and therefore power to not retain what may be a false null hypothesis of 
no model effect, could improve the model’s overall measure of fit. 
 

Figure 33: L ramosissimum often 
establishes at the bay ward edge of 
marshes which often experience a 
slight elevation rise near the water’s 
edge, as shown in the profile below 
extracted from 2004 Lidar data at Ideal 
Marsh. 
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One limitation of this model is the accuracy of the elevation relative to the average high tide 
raster. Lidar elevation has known inaccuracies in brackish marshes where dense vegetation 
falsely raises marsh elevations. Also, because this model relied on a Vdatum conversion 
between MLLW and NAVD88 elevation, values for the average high tides layer were falsely 
increased in the southern reaches of the model. These inaccuracies likely result in model 
biases. 
 
In addition, two key factors missing from this model that may improve prediction are a 
better disturbance variable and, conversely, native plant cover. Assuming L. ramosissimum 
seeds can arrive at any location with an equal chance, establishment would be effected by the 
degree of vegetative cover. In a future iteration of this model, results of remote sensing 
could be used to characterize disturbance and vegetation cover which may help focus the 
model’s ability to predict likely invasion locations. Records of marsh restoration and other 
disturbances might also prove to be useful for improving prediction. 
 
The survey: 
18 days of surveys resulted in only 8% of the model habitat greater than .75 probabilities 
being searched. This highlights the difficulty associated with searching a large area where a 
broad habitat class is being modeled. Additionally, because of difficulty ground truthing 
many marsh areas due to weather and seasonal access restrictions, random sampling of the 
model’s results was not carried out. Instead, surveys focused on surveying high probability 
areas which were accessible. As a result, estimates of how many more L. ramosissimum 
populations may exist in the study extent are difficult to project.  
 
Accuracy assessment: 
Populations found during mapping provide an independent means of assessing the accuracy 
with which the model assigned cells later found to contain L. ramosissimum. Extracting model 
values from all 1627 cells with L. ramosissimum found the average probability was .77 with a 
standard deviation of .08, versus 1596 random cell locations which had a probability of .24 
and standard deviation of .34. This indicates the model accurately assigned high probability 
of L. ramosissimum habitat.  
 
The Kappa statistic of .68 accuracy of high probability versus low probability model 
assignment supports this finding. The kappa statistic takes into consideration probability that 
a given cell will be accurately assigned the appropriate classification by chance. 
 
Visually assessing the model, model accuracy may be compromised by the tendency to 
exclude the interior of marshes as possible L. ramosissimum habitat. While no L. ramosissimum 
populations to date have been found in the interior of marshes, this possibility should not be 
excluded, particularly if high, disturbed habitat exists within the marshes interior. Also, 
because the model depends on the distance to bay’s edge and because channels less than 5 m 
in width were not digitized, marshes located along small channels may have higher 
probability of L. ramosissimum habitat then the model currently shows. 
 
Additional L. ramosissimum populations in the study area 
It is likely that additional L. ramosissimum populations exist within the study extent. Edges of 
marshes along the bay and major sloughs have largely been searched, and undisturbed marsh 



 39 

plains where seedling recruitment is likely limited by dense marsh canopy probably are at low 
risk of new invasive populations.  
 
However, interior high marshes, such as Plummer Creek Marsh, where seed dispersal may 
come from the local watersheds rather than distributed by Bay water, are likely locations 
where large populations may yet be undiscovered. Many of these “inland” high marshes are 
difficult to access due to property access restrictions and additional effort should be 
undertaken to identify and investigate these areas.  
 
L. ramosissimum is a halophyte, and it is also a xerophyte. Because of this, invasions are likely 
to be most severe in areas where conditions are dry, though receiving some inundation, and 
where disturbances have been large. 
 
Model’s utility for early detection: 
While species distribution models rely on the assumption that a species range has reached 
equilibrium, this work shows that logistic regression modeling is a useful tool for early 
detection of invasive species. The primary utility of this model is to focus and limit searches, 
which accuracy assessments show is justified in this study. Ideally, as searches progress and 
populations are discovered, new presence/absence data can be added to improve the model. 
Additionally, predictor variables can be refined and new ones created to improve model 
results. Creating a database of predictor variables facilitates developing models for other 
species of management concern. 
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