
An object based image analysis approach to testing the effect of flowering and patch 
size on Limonium ramosissimum detection using CIR and IKONOS imagery 

 
Abstract: 
Remote sensing is a useful tool to detect and map invasive plants, but detection success 
depends on the spectral properties of individual species, their context, and the imagery used 
for mapping. Using an object based image analysis (OBIA) approach as well as pairwise 
correlations and pixel-based unsupervised classifications, the efficacy of two different image 
sources, 30 cm aerial color infrared imagery and 1 m pan-sharpened multispectral IKONOS 
satellite imagery, were tested to detect an invasive forb, Limonium ramosissimum ssp provenciale 
during its peak flowering period in salt marshes where it has been previously mapped with 
GPS. Using a variety of spectral layers, indices, rule sets, and unsupervised classifications 
parameters, regardless of the patch size, the degree to which patches were in flower at the 
time of image acquisition, or the imagery source, the invasive was not distinguishable from 
surrounding high marsh and transitional upland habitat. To integrate remote sensing into a 
comprehensive weed management program, a systematic review of which invasive species 
can be detected at what scale by which sources of imagery is recommended.  
 
Introduction: 
Invasive plant species are a major management concern in wetland ecosystems. In the San 
Francisco Bay estuary, a number of non-native salt tolerant plant species have emerged as a 
priority for land managers (Grossinger et al, 1998). Monitoring these invasions and detecting 
new ones, such as priority species recently identified by the Bay Area Early Detection 
Network (www.baedn.org, 2010) remains a priority and challenge for land managers. 
 
Remote sensing offers a unique tool to identify invasive plants (Lass et al, 2005), particularly 
in large wilderness areas where ground mapping can be difficult and time consuming, and in 
sensitive habitats like wetlands. But the ability to detect invasive plants varies by species, and 
by the scale of interest. For example, invasive hybrid Spartina patches in San Francisco Bay 
marshes are readily mapped via manual interpretation and digitization of aerial imagery in 
cases when hybrid Spartina grows significantly more vigorously then the native, but remote 
sensing is not possible when hybrid patches are morphologically similar to natives, covered 
by dead standing vegetation, and when patches are smaller than the imagery resolution 
(Hogle, personal communication, 2010).  
 
Another high impact invasive in San Francisco Bay marshes, Lepidium latifolium, is readily 
mapped with hyperspectral imagery (Andrew and Ustin, 2006) and multispectral satellite 
imagery (Fulfrost, personal communication, 2010), though the minimum detectable patch 
size likely varies between imagery sources, a consideration relevant if a goal of mapping is 
early detection of new populations. 
 
In 2007, a non-native salt tolerant plant which invades marshes in Southern California, 
Limonium ramosissimum ssp provenciale, was found at a restored marsh in South San Francisco 
Bay. There, GPS mapping revealed it has heavily recruited in the footprint of a 1987 marsh 
restoration project (Archbald and Boyer, 2010). Since then populations have been found and 
mapped with GPS at 20 restored and historic tidal salt marshes in the Bay. The plant 
establishes primarily in the high marsh and grows in dense patches, particularly along the 
upland transition boundary (Archbald and Boyer, 2010), a habitat utilized by 4 of the 6 plant 



and vertebrate species listed as rare or endangered in the Bay (Josselyn, 1983). This plant was 
recently included in the Bay Area Early Detection Network’s Priority Species List for 
identification and removal (BAEDN, 2010). 
 
In 2009, a project funded by the South Bay Salt Pond (SBSP) Restoration Project was 
initiated to map L. ramosissimum in marshes in and around the 15,000 acre Project area. One 
of the goals of the SBSP project is to maximize native marsh habitat and minimizing invasive 
plants in restored marshes, and locations of L. ramosissimum populations (Figure 1, Appendix) 
suggest the plant is likely to impact restored high marsh habitat if left unmanaged. To search 
for additional populations, a species distribution model for was developed and used to guide 
boat and ground based searches for the plant. These searches identified populations, but 
finding and mapping L. ramosissimum populations in marshes that have not been searched, 
and monitoring populations into the future would be facilitated by a more comprehensive 
detection approach using remote sensing.  
 
Many invasive species have been successfully mapped with aerial and satellite imagery (see 
Lass, et al 2005 for a review). In general, species are easiest to detect when they are spectrally 
distinct from the surrounding landscape, and therefore many mapping studies make use of 
seasonal phenology and map during times of greatest spectral variability, such as when 
species are in flower (Cuneo, 2009; Everitt et al 1996; Hunt et al, 2010; Lass and Prather, 
2004). L ramosissimum has distinctive, showy, abundant purple and white flowers (Figure 1), 
and blooms earlier than the native L. californicum, a trait which may help differentiate the 
invasive from surrounding vegetation via remote sensing. 
 

 
Figure 1: Invasive L. ramosissimum in flower at Coyote Point Marina in S. San Francisco Bay. 
 
Mapping and detection is also most readily accomplished with remote sensing when species 
occur in patches larger than the spatial resolution of the imagery (Rosso, Ustin and Hastings, 
2005), yet early detection and rapid response, the most cost effective method for dealing 



with invasive species (Westbrooks, 2004), depends on identifying populations when they are 
small. Because of this, high spatial resolution imagery is required for early detection, though 
even the highest resolution imagery source will have a minimum detectable patch size which 
must be experimentally determined, and which will vary by the species, and the context that 
species occurs in. 
 
Different imagery sources have proven to be of different utility in species mapping. One 
mapping study, for example, found that an invasive plant, leafy spurge, could be detected 
with hyperspectral satellite imagery, but not with multispectral satellite imagery (Hunt and 
Williams, 2006). Interestingly, the reason for this difference was concluded to be because 
more sophisticated classification algorithms are available for hyperspectral imagery, rather 
than a function of the spectral signature of the plant relative to the range of the multispectral 
sensor used for imagery acquisition.  
 
However, hyperspectral imagery does not always offer an advantage in species detection. A 
mapping study of tidal salt marsh plants, which included a Limonium species, compared a 
range of satellite and aerial imagery sources and found no advantage to using hyperspectral 
relative to multispectral imagery. In fact, mapping accuracy for Limonium narbonense was 
higher for multispectral than hyperspectral imagery and the authors concluded higher spatial 
resolution was more useful than higher spectral resolution for mapping accuracy (Belluco et 
al, 2006). 
 
Aerial imagery provides an improvement over satellite imagery in terms of spatial resolution, 
but is often more expensive to acquire, must be acquired in many more tiles than satellite 
imagery when mapping at large spatial scales (which introduces variability between images 
and complicates remote sensing), and often lacks data in the blue range of the spectrum, a 
loss of spectral resolution that may be significant for detecting some species. Color infrared 
imagery is frequently used for vegetation mapping because healthy vegetation reflects 
intensely in the infrared region of the spectrum, and CIR imagery has successfully been used 
to detect invasive and native marsh species (Tuxen and Kelley, 2008, Lass, et al 2005). While 
color infrared imagery lacks data in the blue range of the spectrum, its higher resolution 
versus satellite imagery offers a potential advantage detecting small vegetation patches.  
 
The objectives of this study were to: 
 
1. Determine whether L. ramosissimum can be detected with either ~30-cm resolution aerial 
color infrared imagery or 4-m pan sharpened to 1-m IKONOS multispectral satellite 
imagery, or both. 
 
2. Determine the degree to which L. ramosissimum flowering, percent cover, and patch size 
influence detection accuracy and how this varies between imagery sources.  
 
Methods: 
Study area:  
Imagery of two marshes, Coyote Pt Marina and Sanchez Marsh (Figure 2, page 4) were 
compared for their ability to detect L. ramosissimum patches. These marshes were chosen 
because they have large L. ramosissimum populations (Table 1, Appendix) which was 



determined by mapping in 2008 (Archbald and Boyer, unpublished) and these populations 
include large and small patches with high percent cover.  
 
Within days of imagery acquisition, L. ramosissimum populations were re-mapped at both sites 
using a handheld Trimble GeoXH GPS with approximately 30 cm horizontal accuracy. 
Patches larger than 1 m2 were mapped as polygons and smaller patches were mapped as 
points. Percent cover of L ramosissimum and percent of inflorescences in flower were 
recorded. Plants greater than 1 m apart were mapped as separate patches. Coyote Point 
Marina was mapped on 7/8/2010 and Sanchez Marsh on 7/5/2010.  
 
Imagery sources: 
Two imagery sources were compared for their ability to detect L. ramosissimum- Color 
infrared aerial imagery with 30 cm pixel resolution and IKONOS 4 m multispectral pan-
sharpened to 1 m.  
 

1 21 2

0 1 2 3 40 .5
K ilo m e te r s µ

1 21 21 21 2

0 1 2 3 40 .5
K ilo m e te r s µ

0 1 2 3 40 .5
K ilo m e te r s µ  

Figure 2: IKONOS satellite and CIR aerial imagery was acquired for (1) Sanchez Creek 
Marsh and (2) Coyote Point Marina. 
 
Imagery from the IKONOS satellite was acquired by GeoEye on 7/4/2010 (Figure 2, page 
5). The IKONOS satellite is equipped with 2 sensors, a .82-meter panchromatic (black and 
white) a 4 m multispectral sensor (spectral ranges in Table 1, page 5). Images from the 4 m 
multispectral sensor were pansharpened to 1 m using the panchromatic layer by GeoEye. 
IKONOS multispectral imagery after pan-sharpening has been used to classify marsh 
vegetation successfully (Bellusco et al, 2006). The imagery was delivered as a 4-band 
georeferenced TIFF. 
 
Color infra red aerial imagery was acquired by GeoG2 Solutions on 7/9/2010 (Figure 3, 
page 5) by airplane at .33m spatial resolution (post-georefrencing). Three monochrome 



cameras (Kodak KAF 39000) collected 16-bit images individually filtered at the wavelengths 
shown in Table 2. Images were delivered as ungeoreferenced TIFFs. 
 
Table 1: Spectral ranges recorded by image sensors and corresponding image bands. 
 Individually filtered Kodak KAF 

3900 Color infrared (CIR)  
IKONOS Multispectral 

Spectral range Sensor range (nm) Image 
band 

Sensor range (nm) Image 
band 

Blue   445-516 nm 1 
Green 520-600 nm Blue 505-595 nm 2 
Red 630-690 nm Green 632-698 nm 3 
Near infrared 760-900 nm Red 757-853 nm 4 
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Figure 3: Color infrared imagery for the two study sites were captured as separate tiles (top). 
Multispectral IKONOS imagery was captured as a single tile (above). 



 
Image Preparation: 
CIR aerial imagery was georeferenced using the Georeferencing toolbar in ArcMap 9.3. 
Control points to were set using a combination of the 2004 lidar data set (Foxgrover, 2005), 
1 m National Agricultural Information Program 2009 imagery accessed through ESRI’s 
ArcGIS Online service, and ground truthed points collected at time of L. ramosissimum 
mapping in July, 2010. 6-10 control points were established per image and control points 
were iteratively chosen to so that total root mean square error remained less than 1 for each 
image. Output cell size was determined by using the measuring tool in ArcMap on spatially 
adjusted images prior to rectification. 
 
The CIR imagery had a slight blurring caused by a shutter glitch on the green filtered camera 
with the result that the green layer was spatially offset from the other layers. After initial 
georeferencing, layers were separated and the green layer aligned with the other two using 
Autosync in Erdas, then layers were restacked for analysis. This correction sharpened the 
image effectively. 
 
The multispectral IKONOS satellite image, though georeferenced by GeoEye prior to 
distribution was approximately 5 meters spatially offset at the time of acquisition. To correct 
this, Coyote Point Marina and Sanchez Creek Marsh subsections were clipped from the 
image, and each study area was spatially adjusted individually using the Georeferencing 
toolbar and spatial reference sources listed above.   
 
Images were rectified using the nearest neighbor resampling option. While cubic convolution 
is recommended for satellite and aerial imagery in ESRI help documentation, the 
rectification process uses a weighted average from the 16 nearest cells to assign rectified 
image cell values, which would result in distortion of the spectral values originally assigned to 
cells at the time of image capture. Nearest neighbor, on the other hand, assigns cell values 
based on the single nearest cell, which most accurately preserves original cell values (Blesius, 
personal communication, 2010).  
 
So that individual imagery bands could be evaluated for their ability to detect L. 
ramosissimum alone and in combination, in Erdas Imagine the subset tool was used to 
separate CIR images at both study sites into the green, red, near infrared layers, and the 
multispectral imagery at both study sites into the blue, green, red, near infrared layers. 
Images were converted into 8-bit unsigned .img files for further analysis. 
 
Next, in Erdas, a principle components analysis (PCA) was carried out on the 3-band CIR 
image, and on the 4-band multispectral image, creating three new data layers for remote 
sensing analysis per imagery sources at each site: the first, second and third principle 
components (Figure 4). PCA pulls out the major trends across an image’s constituent bands 
and principle components are often used in the image segmentation step in Definiens 
Developer (Tuxen and Kelley, 2007) to create objects that identify major habitat trends. A 
histogram equalization was performed on each principle component, a procedure that helps 
normalize values across each image. 
 



 
Figure 4: Principle components of to the multispectral images (left) and CIR image (right) 
were recombined into composite images to aid in interpretation and segmentation. The west 
end of Sanchez Creek Marsh is shown here. 
 
Finally, a Normalized Difference Vegetation Index was created [(NIR – red)/ (NIR + red)] 
using Erdas Modeler for each image at each site. This index, which has widely been used  
to remotely sense vegetation, measures reflectance in the near-infrared region, which 
accounts for about 60% of plant reflectance. The index is normalized between -1 and 1 using 
the red layer, which reduces difference in reflectance across an image resulting from 
atmospheric conditions (www.csc.noaa.gov, 2010). A histogram equalization was also 
performed on each NDVI layer, an additional step to normalize reflectance across the 
images. This index could have been developed in Definiens, as other indices and ratios were, 
but was carried out in ERDAS so a histogram equalization could also be performed. 
 
The following layers from both imagery sources were then imported into Definiens 
Developer for both Sanchez Creek Marsh and Coyote Point Marina: 
 

1. Blue layer (multispectral only) 
2. Green layer 
3. Red layer 
4. Near infrared layer  
5. First CIR principle component- histogram equalized 
6. Second CIR principle component- histogram equalized 
7. Third CIR principle component- histogram equalized 
8. NDVI layer- histogram equalized 

 
Analysis approach 
To test the ability of these imagery sources and layers to detect L. ramosissimum in marshes 
where it has been mapped, an object based image analysis (OBIA) approach using Definiens 
Developer 7.0 was first used. A rule set was developed using layer, ratio and index values to 
separate images into broad classes, including high marsh habitat, where L. ramosissimum 
primarily invades. Then, using Definiens, layers, ratios and indices were tested for their 
ability to further classify habitats with L. ramosissimum. This classification approach was 
carried out at two different spatial scales to test the effect of minimum mapping unit size on 
detection. Next, Definiens objects with layer, ratio and index values considered most likely 
to be useful in detecting L. ramosissimum were exported and tested for correlation with 



percent cover and flowering of L. ramosissimum patches. Finally, in Erdas Imagine, 
unclassified pixel clustering was performed to further test whether spectral properties from 
either imagery source may be used distinguish L. ramosissimum from other species. 
 
Rule set to identify broad habitat classes 
In order to classify broad habitat classes, a first step toward isolating L. ramosissimum in 
images, a unique “rule set” was developed through an iterative process for the CIR and 
multispectral IKONOS imagery (Figures 5 and 6). A rule set includes all the segmentation 
parameters and classification steps required to convert an image to a meaningful thematic 
map in Definiens. A unique rule set for each image was necessary because CIR lacks the blue 
layer useful in classifying the multispectral imagery, and because the same layers and indices 
varied in their usefulness between imagery sources.  
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Figure 5: Rule set developed and executed in Definiens Developer 7.0 to identify high marsh 
habitat and adjacent broad habitat classes using IKONOS imagery. Rule set was run on at 
two scales: 2 and 10. 
 
 
Both rule sets were iteratively developed using the northern half of Coyote Point Marina and 
through a trial and error process. Developing rule sets in Definiens relies on user knowledge 
of the imagery content, and the north half of Coyote Point Marina was particularly well 
known, is representative of the major habitat types at both sites, and contains both dense 
and sparse L. ramosissimum patches, and large and small patches in flower. Rule sets were 
developed through trial and error, but development of indices and ratios guided by previous 



studies (ie. Hunt and Williams, 2006; Tuxin and Kelley, 2009). Rule set results were visually 
checked against the high resolution CIR imagery, as well as against L. ramosissimum patch 
polygons which are known from field mapping to primarily occupy the high marsh, and to a 
lesser extent the upland border, and bare patches. Also, over 15 visits have been made to 
both Coytote Point Marina and Sanchez marsh for extensive field work, and a high degree of 
familiarity with these small marshes helped in imagery interpretation and mapping 
verification. 
 
The rule sets developed there were then applied to both the southern section of Coyote 
Point Marina and to Sanchez Creek Marsh for both imagery types. Applying a rule set both 
within and between images provides a check on the degree to which a rule set’s accuracy is a 
function of within vs. between image variability.  
 
Next, L. ramosissimum polgyons were used to extract classification results to insure the 
thematic map effectively limited L. ramosissimum locations predominantly to high marsh and 
upland transition habitat classes. Mapped habitat classes were extracted using in ArcGIS and 
the relative percent of each habitat classes in ground truthed L. ramosissimum polygons were 
compared by site, scale and image source.  
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Figure 6: Rule set developed and executed in Definiens Developer to identify high marsh 
habitat and adjacent broad habitat classes using CIR aerial imagery. Rule set was run at two 
scales: 6 and 25. 



 
Minimum Patch Size Detection 
Rule sets were executed at two different spatial scales at both sites to test the importance of 
patch size on detection. L ramosissimum patches range at both sites range from single plants 
less than 1 m 2 to patches about 600- 700 m2 (Figure 7). During the initial segmentation step 
in Definiens, scale parameters were chosen so object sizes derived from both imagery 
sources would be comparable. Minimum objects sizes created in Definiens at the two scales 
are comparable to many small and medium L ramosissimum patches at both sites (Table 2). 
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Figure 7: Distribution of L. ramosissimum patch sizes at both study sites. Histograms were 
generated from mapped L. ramosissimum polygons. 
   
 
Table 2: To insure that image object sizes, and therefore minimum L. ramosissimum patch 
mapping sizes, were similar between imagery sources with different pixel sizes, different 
scale parameters were used for both imagery sources.  

Average object size in square meters  
by location 

Imagery Segmentation scale 
parameter 

Coyote Point Marina 
Sanchez Creek 

Marsh 
scale 2 - small patch 1.8 m2 1.9 m2 IKONOS 1 

meter scale 10 – medium patch 42.7 m2 46.8 m2 
scale 6 - small patch 1.9 m2 1.1 m2 CIR .33 meter 

scale 25 – medium patch 31.1 m2 23.3 m2 
  
 
Use of Layers and Indices for Detection 
Once high marsh and transitional upland habitats were the imagery layers were combined 
into a series of indices and ratios (Table 3, page 11) in Definiens and explored in a trial and 
error approach typical in OBIA to identify whether spectral properties of objects in L. 
ramosissimum patches could be used to separate the invader from other marsh and transitional 
upland species. This was accomplished using the Feature View in Definiens Developer 
(Figure 8, page 11). These visual comparisons were performed at both the small and medium 
patch spatial scales 
 
 
 



Table 3: Layers, ratios, indices and other object features used to develop a rule set to detect 
L. ramosissimum. * Denotes features only tested on multispectral imagery. 
Layers Ratios Indices Object features 

blue* green/red NDVI hue 
green blue/green* GNDVI texture 
red blue/red* blue/red index* brightness 
NIR NIR/red distance from low marsh class 
pc1 NIR/blue* distance from upland class 
pc2 NIR/green 

brightness/NIR 
brightness/red 
brightness/green 
brightness/blue* 
blue/pc1* 
red/pc1 
green/pc1 

pc3 

nir/pc1 

green/red index 

standard deviations of layers, 
ratios and indices 

 
 

 
Figure 8: The Feature View in Definiens (arrow above) was used both to identify layer, ratio, 
and index values to classify broad habitat classes, and to try and parse L. ramosissimum from 
surrounding high marsh and upland transition habitat. In the screen shot above, objects with 
NDVI values between -.09 and .44 are selected in the map to the left. 



Relationship between spectral values and patch characteristics 
After spectral layers and indices were tested visually for their ability to detect L. ramosissimum 
in Definiens at different minimum patch sizes, the predictive power of indices and layer 
values relative to patch cover and percent flowering was explored. To do this, image objects 
with layer, ratio and index values were exported as shapefiles, spatially joined with mapped 
L. ramosissimum polygons in ArcGIS, then brought into Excel. Values were graphed as 
pairwise scatter plots and r2 measured ; with object values as dependent variables and patch 
flowering and cover as independent variables. This method has been used in previous studies 
to explore the predictive relationships between indices, ratios and species percent cover 
(Hunt, 2006).  
 
These analyses were carried out using multispectral and CIR imagery at Sanchez Creek 
Marsh. Sanchez Creek Marsh was chosen for this analysis because Coyote Point Marina 
imagery had already been thoroughly explored during the Definiens rule set development.  
 
Unsupervised classifications 
Finally, a series of unsupervised pixel-based classifications were performed using Erdas 
Imagine to test whether ISODATA clustering might be useful for mapping the invader, and 
results checked against mapped polygons. To do this, the high marsh habitat class defined 
using Definiens in the northern half of Coyote Point was exported as a shapefile, converted 
to an Erdas AOI file and used to mask pixel-based analysis. Cluster analyses were run with 6 
and 10 classes in high marsh habitat. ISODATA clustering analysis was also run on the 
unmasked Sanchez Creek Marsh image with 20 and 30 classes. 
 
Results: 
Study area ground-truthing:  
Results of mapping L. ramosissimum percent cover and flowering at Coyote Point Marina and 
Sanchez Creek Marsh show the variety of patch sizes, cover and percent flowering present at 
the time of imagery acquisition (Figs 2.1 and 2.2, Appendix). Plotting patch size versus 
percent cover of patches indicates that while smaller patches have variable percent cover, 
larger patches regularly have greater than 50 percent cover (Figure 9), indicating both large 
and small patches with dense cover were present during image acquisition. 
 

 
Figure 9: Large and small patches had high percent cover at both marshes during image 
acquisition. 
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Rule sets to identify broad habitat classes: 
Definiens rule sets to classify broad habitat classes were successful in restricting L. 
ramosissimum polygons into high marsh and upland classes for focused analysis using both 
imagery types. However, the proportion of L. ramosissimum at ground truthed patch locations 
classified as high marsh, upland and bare habitat varied at different marshes, with the 
imagery, and at different scales (Table 4.1, Table 4.2).  Classified maps of the northern 
section of Coyote Point Marina from both imagery sources relative to mapped L. 
ramosissimum patches are shown in Figure 10, page 14. 
 
Table 4.1: For CIR imagery, at locations of ground mapped L. ramosissimum polygons percent 
of each habitat class assigned in Definiens by site and scale.  
 Color infrared (CIR) aerial imagery 

 
 Coyote Point Marina, 

northern half  
Coyote Point Marina, 
southern half 

Sanchez Creek Marsh 
 

 Scale 6 Scale 25 Scale 6 Scale 25 Scale 6 Scale 25 
high marsh 57.7 66.3 38.2 36.9 20.2 28.4 
upland 38.1 31.8 44.2 47.9 63.1 60.2 
bare 1.7 0.9 16.3 14.7 3.5 3.8 
low marsh 2.4 0.8 1.4 0.5 13.0 7.6 
mud 0.2 0.1 0.0 0.0 0.1 0.0 
 
Table 4.2: For multispectral imagery, at locations of ground mapped L. ramosissimum 
polygons, percent of each habitat class assigned in Definiens by site and scale. 

 
Multispectral satellite imagery 
 

 
Coyote Point Marina, 
northern half 

Coyote Point Marina, 
southern half 

Sanchez Creek Marsh 
 

 Scale 2 Scale 10 Scale 2 Scale 10 Scale 2 Scale 10 
high marsh 80.2 88.2 35.9 48.4 57.8 64.9 
upland 17.3 11.6 31.4 47.2 13.6 17.0 
bare 0.0 0.0 31.4 0.6 13.6 0.1 
low marsh 2.5 0.2 0.8 0.8 14.8 17.6 
mud 0.0 0.1 0.5 0.0 0.2 0.4 
oyster 0.0 0.0 0.2 0.0 0.1 0.0 
 
Use of layers, ratios and indices for detection: 
While rule sets were useful in isolating habitat invaded by L. ramosissimum, additional Feature 
View analysis using layer, ratio and index values within high marsh and upland habitat failed 
to identify value ranges that separated L. ramosissimum from surrounding habitats. Because 
this was carried out in an iterative, trial and error process within Definiens, these results at 
the broad habitat scale are not easily summarized. However, a list of key ratios and indices 
which were examined, and observations about their utility in classifying marsh habitats are 
included in Table 2, Appendix.  
 
Relationship between spectral values and patch characteristics 
Results of a series of pair wise correlations show no strong predictive relationships between 
patch percent cover and flowering existed for any of the layers, ratios or indices examined, 
regardless of imagery source. (Figures 3.1 and 3.2, Appendix).   



 

 
Figure 10: Raw imagery (top) and maps (bottom) classified using rule sets in Definiens of the 
Northern half of Coyote Point Marina. Maps show locations with L. ramosissimum displayed 
relative to broad habitat map results.   
 
 
Unsupervised classification: 
Unsupervised classifications performed using Erdas imagine with both imagery types appear 
to readily distinguish broad marsh habitat types. However, whether images were classified in 
their entirety (Figure 10, page 15), or whether cluster analysis was limited to masked high 
marsh habitat (Figure 11, page 16), significant spectral confusion between L. ramosissimum 
patches, marsh and upland habitats remained. Visual examination reveals no pixel classes are 



located dominantly in ground mapped L. ramosissimum polygons. Pixel classes that regularly 
appear in L. ramosissimum polygons are wide spread in classes that correspond with dominant 
native high marsh species, upland vegetation, and bare ground.   

 
 

 
Figure 10: CIR imagery of Sanchez Creek Marsh clustered using an unsupervised 
classification into 20 habitat classes. Results show spectral confusion between L. 
ramosissimum (outlined above) and other high marsh and upland habitats.  
 
 



 
Figure 11: Multispectral imagery of Sanchez Creek Marsh clustered using an unsupervised 
classification into 8 habitat classes. Results show spectral confusion between L. ramosissimum 
(outlined above) and other high marsh habitats. 
 
 
Discussion 
No spectral characteristics were discovered to detect L. ramosissimum using high resolution 
CIR and multispectral sources, even though the imagery included patches in flower which 
were many times larger than the imagery resolution. This is likely because of the types of 
sensors used in relation to L. ramosissimum’s spectral characteristics, but could also be a 
function of the pixel segmentation and clustering algorithms used and methods applied. 
Further analysis with these images, archived imagery, and field studies would help to 
determine which the case is, and whether a remote sensing detection protocol may yet be 
developed for L. ramosissimum. 
 
It is clear from the Feature View analysis in Definiens and the pairwise testing for predictive 
relationships between patch characteristics and spectral layers, ratios and indices and, that no 



obvious spectral features readily distinguish L. ramosissimum from surrounding vegetation 
using CIR and IKONOS multispectral imagery.  
 
In the case of IKONOS imagery, this may be because purple, the visually dominant color of 
flowering L. ramosissimum, occurs in the 400- 410 nm range of the spectrum and IKONOS 
imagery only detects wavelengths of light longer than 455 nm. Also, blue light is the 
wavelength most scattered by the earth’s atmosphere, reducing detection potential of these 
flowers with satellite imagery. Additionally, the color and near infrared bands in IKONOS 
imagery are collected at 4 meter resolution, then pan-sharpened to 1meter. In this process, 
nearby, non- L. ramosissimum species are spectrally averaged into pixels where L. ramosissimum 
is present. This spectral dilution of pixels is likely exacerbated by the narrow, linear zonation 
of L. ramosissimum at some locations in the marshes studied.    
 
In the case of CIR aerial imagery, which suffers from far less atmospheric scattering and 
which has considerably higher original pixel resolution at color and near infrared 
wavelengths than IKONOS, there is no collection of blue light. This is likely why no flower 
based spectral signature was apparent with the CIR imagery. L. ramosissimum’s vegetative 
growth form, on the other hand, which consists of perennial, green basal rosettes, likely 
contributes strongly to pixel spectra, especially when densely growing. However, the densest 
L. ramosissimum patches were confused with other high marsh species, indicating the spectral 
signature appears too similar to other plant species for ready detection.  
 
Both Definiens and Erdas pixel clustering algorithms alternatively grouped L. ramosissimum 
with upland and high marsh species when patch percent cover was low, yet readily 
distinguished between upland and high marsh vegetation. One explanation of this may be 
that reflectance in low percent cover patches in upland transition areas are dominated by 
background upland vegetation and soil moisture differences, rather than the “high marsh” 
signature of dense L. ramosissimum patches. Dense patches of L. ramosissimum were regularly 
classified with high marsh species in both Definiens and Erdas. 
 
Methods used for clustering pixels and classifying images may also contribute to the failure 
to detect L. ramosissimum. Hunt and Williams, 2006 concluded their inability to detect leafy 
spurge with multispectral satellite imagery versus hyperspectral imagery was not the result of 
insufficient sensor range or the spectral resolution of multispectral imagery, but rather the 
difference between classification algorithms available for hyperspectral and multispectral 
imagery. The OBIA approach used in this study focused on developing a rule set using 
relatively simple, univariate spectral properties for detection. It’s possible more sophisticated 
classification procedures could help resolve L. ramosissimum.  
 
More sophisticated classification tools exist within Definiens- such as the nearest neighbor 
(NN) approach, in which object features and samples of each class of interest are selected by 
the user and all image objects are assigned to the closest class in a multivariate space. This 
approach is possible with the existing imagery, though more thorough ground truthing 
would be required to accurately assign samples to classes. Also, object features chosen must 
be predictive of L. ramosissimum and from correlation analysis, this appears unlikely.  
 
Object features could also be exported as they were in this study, and then analyzed with a 
multivariate statistical analysis, allowing both degree of flowering and percent cover to be 



compared simultaneously with multiple spectral features. Similarly, in Erdas, while an 
unsupervised classification approach is useful to test for obvious spectral differences 
between species, this process can certainly be refined using a supervised classification 
approach, which may yield more accurate mapping results. 
 
Though additional analysis options exist with the current imagery, the fact that no clear 
spectral signature is readily available makes the possibility of landscape scale detection 
unlikely with either of the imagery sources used in this study. Refining methods to detect 
subtle distinctions in the images used in may improve mapping results with the existing 
imagery, but the lack of an obvious spectral signature for L. ramosissimum makes the 
development of an efficient landscape scale detection protocol using either CIR or 
IKONOS imagery sources unlikely.  
 
Hyperspectral aerial imagery may more readily detect L. ramosissimum, because of increased 
spectral range and resolution. Hyperspectral sensors collect spectra starting around 400nm, 
which would detect violet light, particularly if the sensor is aerially deployed (vs. satellite). 
Archived hyperspectral imagery may exist for the Sanchez Creek Marsh, Coyote Point 
Marina, or other L. ramosissimum locations that could be tested for detection potential at low 
cost. 
 
The potential for hyperspectral sensor detection of L. ramosissimum could also be evaluated 
by field studies using a hand-held field spectrometer (ie the GER 1500 collects spectra from 
350 nm-1050 nm). A study evaluating the spectral differences between L. ramosissimum and 
surrounding marsh and transitional upland vegetation at different times of the year would 
determine when phenological differences between species will maximize detection. During 
the fall and winter, some native march vegetation senesce, but L. ramosissimum remains green 
year round. This may present an opportunity for mapping.  
 
Early detection and rapid response is critical for cost-effective management of invasive plant 
species. Remote sensing is a useful tool to aid in detection, but the ability and scale at which 
a given species can be detected varies with the imagery used and the spectral context of the 
plant. A systematic study of which invasive species can be detected by which imagery 
source(s) and how detection rates vary seasonally is recommended as a key step towards 
developing a remote sensing-based invasive species monitoring program. 
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Appendix:

 
Figure 1: Known locations of L. ramosissimum ssp provenciale in San Francisco Bay. 
 

 
 
 
 
 
 

1 m2 

 5000 m2 

Limonium  
ramosissimum  
ssp provenciale 

South Bay Salt Pond  
Restoration Project 

removed Invasive L. ramosissimum 
in San Francisco Bay, 2010 

Map by Gavin Archbald 

 



Table 1: L. ramosissimum population sizes in San Francisco Bay. Highlighted locations were 
used for image analysis.  
Location Area (m2) 
Sanchez Marsh 4361 
SFO 3859 
Coyote Point Marina 2300 
Oyster Point Marina 1592 
Coyote Creek Lagoon 1117 
Seal Slough 519 
N. Coyote Point 449 
Ideal Marsh 239 
Whales Tail 36 
Albany Bulb 32 
Beach Park 13 
Yosemite Slough 2 
Outside R1 2 
Sausalito 1 
Corte Madera 1 
Candlestick Point State Park 1 
Pier 94 1 
Bird Island 1 
Greco Island 1 
Plummer Restoration Marsh unknown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 2: Key layers, ratios and indices used in an effort to detect L. ramosissimum and 
comments on their observed general utility. 
 
Index      Utility in distinguishing: 
 
NDVI 
Normalized Difference Vegetative Index Vegetation from bare ground 
= (NIR – red) / (NIR + red)  
 
GNDVI     Vegetation from bare ground 
= (NIR – green) / (NIR + green) 
 
G/R ratio = green / red   Upland veg., but noisy 
 
NDVI and mean green layer   Algae on mudflats from Spartina 
      
NIR      Water from mud and vegetation 
 
Standard deviation of layer   Pure from mixed vegetation patches 
 
Hue (red, green blue)    Finds Grendelia stricta 
 

Blue/Red index    Identifies marsh zones w/ IKONOS 
= (blue – red) / (blue + red)  
  
Blue/Green index    Separates terrestrial dirt from mud 
= (blue – green) / (blue + green) 
 
Brightness/ NIR    Particularly useful for CIR imagery 
 
Brightness/ green    Particularly useful for CIR imagery 
 
 
 
 



 
Figure 2.1: Percent cover and flowering at Coyote Point Marina on 7/8/2010. 
 

 
Figure 2.2: Percent cover and flowering at Sanchez Creek Marsh on 7/8/2010. 



 
Figure 3.1: No significant predictive relationships were found between a L. ramosissimum 
percent cover and flowering vs a series of vegetation indices and ratios derived from CIR 
imagery at Sanchez Creek Marsh. 
 
 



 
Figure 3.2: No significant predictive relationships were found between  L. ramosissimum 
percent cover and flowering vs a series of layers, ratios and indices derived from IKONOS 
imagery at Sanchez Creek Marsh.. 
 
 
 


