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Executive Summary

Sampling trips were coordinated in the second half of 2008 to examine the interstitial water
in the sediment and the overlying bottom waters of three shallow (average depth <1 meter) ponds
adjacent to the southern reach of San Francisco Bay (herein referred to as South Bay), which were
previously used in commercial salt production. In recent years, the ponds were modified for
wetland restoration and management as part of the South Bay Salt Pond Restoration Project. A
pore-water profiler, modified for dissolved-oxygen sampling, was used to obtain the first
centimeter-scale estimates of the vertical concentration gradients for diffusive-flux determinations.
This study, a collaboration between scientists from two disciplines within the U.S. Geological
Survey (Water Resources and Biological Resources), provides information necessary for developing
and refining pond-management strategies and supports efforts to monitor changes in fish and
wildlife assemblages associated with the habitat-restoration program.

Between August 27 and September 30, 2008, pore-water profilers were successfully
deployed in the South Bay salt ponds A16, A14, and A3W (fig. 1; fig. 2; table 1), measuring the
concentration gradient of dissolved oxygen near the sediment-water interface. In each pond,
profilers were deployed in triplicate at two sites: a shallow site (< 1 meter) and a deep site (> 2
meters). The water column at all deployment sites was monitored with dataloggers for ancillary
water-quality parameters (including dissolved oxygen, salinity, specific conductance, temperature,
and pH) to facilitate the interpretation of benthic-flux results.

Calculated diffusive benthic flux of dissolved (0.2-micron filtered) oxygen was consistently
negative (that is, drawn from the water column into the sediment) and ranged between -0.5 x 10
and -37 x 10 micromoles per square centimeter per second (site averages depicted in table 2).



Assuming pond areas of 1.0, 1.4, and 2.3 square kilometers for ponds A16, A14, and A3W,
respectively, this converts to an oxygen mass flux into the ponds’ sediment ranging from -1 to -72
kilograms per day. Diffusive oxygen flux into the benthos (listed as negative) was lowest in pond
Al14 (-0.5x 10° to -1.8 x 10™® micromoles per square centimeter per second) compared with
diffusive flux estimates for ponds A16 and A3W (site averages -26 x 10 to -35 x10° and -34 x 10
to -37 x10 micromoles per square centimeter per second, respectively). These initial diffusive-flux
estimates are of the order of magnitude of those measured in the South Bay using core-incubation
experiments (Topping and others, 2004), which include bioturbation and bioirrigation effects.
Estimates of benthic oxygen demand reported herein, based on molecular diffusion, serve as
conservative estimates of benthic flux because solute transport across the sediment-water interface
can be enhanced by multidisciplinary processes including bioturbation, bioirrigation, ground-water
advection, and wind resuspension (Kuwabara and others, 2009).

Potential Management Implications

Evaluation and refinement of management efforts to restore the South Bay salt ponds
involves physical habitat construction that reestablishes hydrologic communication between the
estuary and ponds. Such hydrodynamic changes can affect the water quality and hence, through
trophic transfer, the composition and abundance of fish and wildlife assemblages in both the ponds
and the estuary. Aside from the transport of major cations and anions associated with salt ponds,
concentration gradients for both macro- and micronutrients between the ponds and estuary may also
affect the rate of primary production and the associated biomass and composition of primary
producers at the base of the food web in these ponds. This work provides: (1) initial measurements
of benthic demand of dissolved oxygen in three of the salt ponds involved in the restoration
program and (2) a research approach to effectively screen areas where benthic/sediment oxygen
demand may be of concern. Results presented herein indicate significant oxygen demand by the
pond benthos that depletes water-column oxygen levels in interior, shallow regions that dominate
the ponds relative to deeper areas at the entrances and discharge areas with lower hydrologic
residence times. Application of the pore-water profilers, modified for this dissolved-oxygen study,
can help locate areas (“hot spots™) of particular concern and subsequent emphasis for restoration or
management activities in the ponds and adjacent areas of the estuaries.

Background

Commercial solar evaporation salt production began in the mid-1850s in San Francisco Bay
(Goals Project, 1999). Production at a massive scale (more than 1,000,000 annual tons, including
North and South Bay ponds) was occurring by 1959, and continued through the end of the century.
In 2003, the ponds were purchased for restoration using Federal and California State funds. An
Initial Stewardship Plan was implemented beginning in 2004 for controlled circulation of ponds
with estuarine waters to maintain low salinity concentrations during the restoration planning phase
(Life Science Inc., 2003). Ponds remain under active management until actions are taken to restore
them to tidal salt marsh, but some ponds will be maintained as ponds and managed long-term for
waterbird habitat. This study occurred in three ponds that are slated to be retained as open-water
pond systems. More information can be found at the South Bay Salt Pond Restoration Project
website: http://southbayrestoration.org.




Oxygen demand estimates are necessary to determine the viability of managed ponds as
habitat for wildlife, including birds and fishes. Anoxic waters are unsuitable for fish survival and
can lead to massive die-offs. Hypoxic and anoxic conditions similarly limit the biomass and
diversity of estuarine benthic invertebrates (Diaz and Rosenberg, 1995). Low dissolved oxygen
conditions can thus limit foraging resources for waterbirds that feed on these taxa. The thick benthic
algal mats observed in these former salt ponds act as an organic source of energy for bacteria, which
deplete the supply of oxygen through respiration.

In order to quantify the porewater concentrations of dissolved oxygen, an existing porewater
profiler was modified to accommodate gas-tight glass syringes instead of the gas-permeable
polypropylene syringes used for macronutrient and trace-metal sampling. However, each profiler
operated as detailed in Kuwabara and others (2007 and 2009).

Objectives

To facilitate science-based management decisions related to water and ecosystem quality in
South Bay Salt Ponds undergoing restoration activities, this study provided the first in-place (in-
situ) measurements of the benthic fluxes of dissolved oxygen between the bed material and water
column of three salt ponds. The sampling occurred during late summer or early fall, when benthic
algal biomass would be expected to be at its peak. Benthic-chlorophyll-a measurements at each
pond site were made to help place results from this study in proper context. Because dissolved
oxygen in the water column near the entrances to these ponds is consistently higher than at sites
within these ponds, it is hypothesized that the benthos contributes to the water-column depletion.
The apparent level of depletion is surprising. Usually in cases of predominantly shallow aquatic
systems (average < 1 meter) there is expedited exchange of oxygen with the atmosphere and little
benthic depletion. Conversely, the shallow depths also increase the surface/volume ratio,
potentially increasing the importance of the benthos.

Results and Discussion:

Dissolved-Oxygen Flux Estimates Based on Diffusion:

As discussed in detail within the section on Methods below, pore-water profilers were
deployed in South Bay Salt Ponds A16, A14, and A3W (fig. 1; fig. 2) in late summer to early fall
2008. The flux of dissolved oxygen as determined from pore-water concentration gradients was
consistently negative (that is, into the sediment from the overlying water column) and ranged
between -0.5 x10°® and -37 x10"® micromoles per square centimeter per second (table 2a).

Ponds A16 and A3W exhibited comparable diffusive flux estimates, while A14 dissolved-
oxygen fluxes were, on average, more than an order of magnitude lower. Within A16 and A3W,
replicate samples showed little variation, both between and within the ponds’ shallow and deep
locations (table 2b). However, the dissolved-oxygen fluxes at A14 were three times higher at the
deep site relative to the shallow site.

All flux calculations are based on Fick’s Law, which describes how differences in
concentration drive diffusion. As discussed in Methods, the sampler used in these methods was
designed to assess concentration changes over the first 10 centimeters of sediment, with the
assumption that many solutes will exhibit a gradient between different sediment depths. However,
at least in ponds A16 and A3W, the sediment oxygen demand was high enough to reduce even the



shallowest porewater sample (1 centimeter deep) to zero milligrams per liter of oxygen (table 3). It
is certainly possible that porewaters were oxygen depleted at depths less than 1 centimeter. As a
result, diffusive flux estimates, particularly for A16 and A3W, are probably gross underestimates.

Extrapolated over the pond areas, our observed range is 1 to 72 kilograms of oxygen per
day. By comparison, the calculated atmospheric diffusion of oxygen to the pond water column
based on Fick’s Law estimates is orders of magnitude higher (656, 657, and 1,365 kilograms
oxygen per day for ponds A16, A14, and A3W, respectively; appendix A) Although a direct
comparison would seem to indicate that diffusive flux of oxygen is insignificant compared to
atmospheric supply, an observation of the diel oxygen levels indicates otherwise. Figures 3. 4, and
5 show that dissolved-oxygen concentrations in the water column become suboxic, and sometimes
anoxic, in the absence of photosynthetic oxygen production. There is a drawdown of oxygen during
the dark hours, due to factors such as algal and detrital decomposition and respiration by living
algae, which is occurring at a faster rate than inputs of oxygen by atmospheric and other sources.
Further study of total-oxygen demand in these systems would be warranted to provide greater
spatial and temporal resolution for this process that so critically affects water quality in the ponds.

In ponds A14 and A3W, the sonde data indicate that water coming in through the intake is
always more oxygenated than at any internal sites (Mruz and others, 2009). This demonstrates the
depletion occurring within the ponds despite the well-mixed, shallow depths. Pond A16 is an
outlier here, with low dissolved oxygen at the intake site most of the time. The hydrodynamics of
A16 appear to be that only at the highest tidal cycles does oxygenated water enter the pond through
the inlet. All other sites at all three ponds exhibit their highest dissolved oxygen concentrations
during the most optimal photosynthetic conditions at midday. Although a complete understanding
of the hydrodynamics of these ponds is beyond the scope of this report, figure 2 indicates the
specific flow structures of each pond.

The benthic-chlorophyll-a and phaeophytin data presented below do not explain the lower
oxygen diffusion to the sediment in pond A 14 relative to ponds A16 and A3W. However, Mruz and
other (2009) have published water-column chlorophyll-a concentrations, taken within 10 days of
each of the profiler deployments at each pond, which indicate that A14 has the lowest water-column
chlorophyll-a concentrations of the three ponds [A16 (on Aug. 27): 72 + 90 micrograms/liter; A14
(on Sept. 18): 25 + 8 micrograms/liter; A3W (on Oct. 9): 72 + 17 micrograms/liter]. Additional
sampling, detailed in Mruz and others (2009), occurring earlier in the summer and later in the fall
indicated that A14 has significantly lower average chlorophyll-a concentrations in the water column
compared to A16 and A3W. It should be noted that only phytoplanktonic, not macroalgal (which
are significant in this system), chlorophyll-a is measured by this method.

The growth and subsequent settling of phytoplankton augment the benthic carbon source to
microbial and macroinvertebrate assemblages near the pond beds. It has been demonstrated that
feeding and foraging mechanisms by certain macroinvertebrates may significantly enhance the
benthic flux of solutes (Kuwabara and others, 1999; Boudreau and Jorgensen, 2001). Very little is
known about the macroinvertebrate or microbial assemblages in the ponds that may alter nutrient
cycling in ponds. Macroinvertebrates likely contribute significantly to benthic processes, given the
elevated biomass of primary producers and dramatic dissolved-oxygen gradients observed near the
sediment-water interface in these ponds.




Linkage to Dissolved Nutrients:

Autotrophic activity can generate biomass, reflected in elevated benthic-chlorophyll-a
measurements, that upon degradation creates a benthic oxygen demand. This primary production
assimilates macronutrients at a ratio referred to as the Redfield ratio (Wetzel, 2001). Specifically,
dissolved-inorganic nitrogen (nitrate, nitrite, and ammonium combined; N) divided by dissolved
phosphorus (P, most bioavailable as orthophosphate or soluble reactive phosphorus) often exists at
the ratio of approximately 16:1 (in molar units) in systems without N or P limitation. Averaged
over all dates and ponds, the molar N:P was about 2:1 (27 + 24 micromolar N: 15 + 6 micromolar
P; Mruz and others, 2009), indicating that all three ponds are significantly depleted in nitrogen
relative to phosphorous. However, the N concentration is too high to be considered limiting. Still,
this imbalance suggests that nitrogen-fixing cyanobacteria (blue-green algae) might thrive in the
ponds. The algal population of a nearby pond also under restoration, named A18, was shown to
include Anabaenopsis sp. and Anabaean sp., both capable of nitrogen fixation (Thebault and others,
2008).

The original configuration of the profilers was designed for nutrient flux determination
(Kuwabara and others, 2009). Estimates of the diffusive flux of nutrients into the water column of
these salt ponds could be useful in the study of algal blooms and their effect on water quality.

Dissolved Organic Carbon (DOC) in the Water Column:

Dissolved organic matter, measured as DOC, is a ligand that can compete for trace-metal
complexation in the water and hence affect the remobilization and bioavailability of biologically
reactive trace metals (Kuwabara and others, 1986). For example, Kuwabara and others (1989 and
2002) noted that spatial trends for certain dissolved trace metals (copper and zinc) in south San
Francisco Bay and Lahontan Reservoir (mercury) were coincident with DOC.

DOC analysis, while not part of the study’s focus, was completed for one profiler in pond
A16 and for all profilers in pond A3W. The profiler data (table 4) exhibit DOC concentrations
increasing with depth, in some cases by an order of magnitude. These DOC concentration gradients
indicate that organics are diffusing out of the sediment. Both the nearby Alviso slough (Marvin-
DiPasquale and Cox, 2007) and the upstream reservoirs (Kuwabara and others, 2005) are known to
exhibit elevated mercury concentrations, and this mercury is likely to be bound to the organics
diffusing out of the sediment. Future direct measurements of mercury and other trace metals in
porewater would be required to investigate that possibility.

Water-column DOC concentrations were between 9 and 12 milligrams of carbon per liter
(J.E. Cloern, written commun.; table 4), which is much higher that the typical South Bay
concentrations of between 1 and 2 micrograms per liter (Topping and others, 2004).

Benthic Chlorophyll:

Benthic-chlorophyll-a measurements provide an indication of the settled carbon load, as
well as benthic phytoplankton communities, on the lake bed as phytoplanktonic bloom conditions
wax and wane. Measurements of benthic chlorophyll-a and its degradation by-product,
phaeophytin, were taken for the three salt ponds associated with the profiler deployments. Benthic
chlorophyll-a, averaged over all three ponds (table 5), appears marginally higher compared to
results for nearby south San Francisco Bay, but the difference is not statistically significant (2.3 +



2.6 and 1.1 + 1.5 micrograms per square centimeter, respectively; Topping and others, 2004).
Benthic phaeophytin was significantly higher in the ponds relative to the Bay (averaging 58 + 18
and 11 + 4 micrograms per square centimeter, respectively). This high phaeophytin concentration
at all sites is an indicator of the settled algal material now at senescence and available for
consumption by bacteria—resulting in respiration and oxygen depletion. Note that these samples
were collected in late summer to early fall, when algal communities are often maximal but tending
toward senescence. Also, with no other known benthic-chlorophyll-a data from these ponds, there
is no temporal context for within-site comparison. Compared to the highest annual average
observed in salt ponds in Western Australia (~40 and ~10 micrograms per square centimeter of
benthic chlorophyll-a and benthic phacophytin, respectively; Segal and others, 2006), ponds A14,
A16, and A3W averaged much lower benthic chlorophyll-a and much higher benthic phaeophytin.

Study Design and Methods

The protocol described in this section focuses on method applications in this sampling of
porewater for dissolved oxygen in south San Francisco Bay salt ponds. A basic understanding of
the hydrodynamics of these ponds can be inferred from the map in figure 2.

A nonmetallic pore-water profiler, originally designed for nutrient and trace-metal sampling
(with a patent application submitted), was modified for this study. In addition to water just above
(approximately 1 centimeter) the sediment-water interface, samplers collected interstitial water from
five depths within the top 10 centimeters of the lakebed, with fritted polypropylene probes at 1, 2,
3.3, 5.5, and 10 centimeters, to characterize dissolved-solute vertical gradients (that is, six
independent sampling circuits). Each sampling circuit collected filtered (0.2 micron) water into 25-
milliliter glass syringes. After being lowered onto the pond bed, the device was tripped
mechanically to begin sample collection and retrieved at least 8 hours later to ensure that sufficient
volume had been collected at a slow rate. In designing the profiler, dye experiments indicated that
this slower intake avoided short circuiting (in other words, the porewater at the 2-centimeter depth
accidentally being collected by the 1-centimeter probe) of samples between depths and along device
surfaces. After retrieval, the sample syringes were closed with a valve, placed in argon-filled bags,
and refrigerated in darkness until chemical analysis.

Pore-water profilers were deployed in the South Bay salt ponds A16, A14, and A3W on
August 27, September 10, and September 30, 2008, respectively (fig. 1; fig. 2; table 1),

Flux calculations, based on Fick’s Law, assume that the process is diffusion controlled with
solute-specific diffusion coefficients (Li and Gregory, 1974). Hence, the calculated benthic flux of
dissolved solutes based on pore-water profiles can be enhanced by bioturbation, bioirrigation, wind
resuspension, and potential groundwater inflows.

At each profiler-deployment site, dataloggers monitored diel changes in the water column at
15-minute intervals. Samples for benthic chlorophyll-a were also obtained by subcoring replicate
grab samples.

Sampling methods have been previously described (Kuwabara and others, 2003 and 2007),
but details are provided below. At each site, the following samples were collected, unless otherwise
noted.

Dissolved Oxygen (DO)

Within hours of recovering the samplers, each 25-millilter glass syringe was placed in a
syringe pump, which dispensed the sample at a steady rate. Dissolved oxygen (0.2 micron) was



measured as the sample passed through a 3.2 millimeter (1/8 inch) acrylic 0.9-milliliter flow-
through cell fitted with a microelectrode (Microelectrodes, Inc., Bedford, New Hampshire). The
microelectrode was calibrated initially with helium-sparged water and sloped with air-saturated
water. Periodic calibration checks were performed using oxygen-free helium and air in place of
water. Less than 1 milliliter of sample from the profiler syringe was required for a stable DO
reading, significantly less than the volume requirement for the micro-Winkler method used in
previous studies (approximately 7 milliliters, Kuwabara and others, 2000). Sample containment in
the glass syringe was an additional advantage of this DO method.

Benthic Chlorophyll

At each pond site, the top 0.5 centimeter of lakebed material was collected from a fresh
Ekman grab and stored refrigerated in a plastic Petri dish within a sealed plastic bag. Each dish was
subsampled in triplicate within 24 hours for benthic chlorophyll-a. The surficial sediment for each
replicate was collected on a glass-fiber filter and buffered with 1 milliliter of magnesium carbonate.
Water was removed from the buffered samples by vacuum at less than 5 pounds per square inch to
avoid cell lysis. Samples were then frozen in darkness for preservation until spectrophotometrically
analyzed by methods described in Thompson and others (1981) and Franson (1985).

Dissolved Organic Carbon (DOC)

Aliquots of sample water from the glass syringes were dispensed directly into autosampler
vials for dissolved organic carbon analysis by high-temperature combustion (Qian and Mopper,
1996; Vandenbruwane and others, 2007). Potassium phthalate was used as the standard. Low-DOC
water (blanks less than 40 micrograms organic C per liter) was generated from a double-
deionization unit with additional ultraviolet treatment (Milli-Q Gradient, Millipore Corporation).
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Figure 1. Maps of ponds A16,A14,and A3W, including sampling locations and datasonde locations
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Table 3. Dissolved-Oxygen (DO) profiles for ponds A16, A14, and A3W

Pond A16 - 8/27/2008
Deployment: 08:00 - 18:00 PT Deployment: 08:00 - 18:00 PT
Shallow #2 Deep #1

Shallow A % DOvs. Dead sp. DO Deep A % DO vs. Dead sp. DO
depth (cm) atmo.  correct. lesl/| depth (cm) atmo. correct.

olw 9.2 8.4 111 olw 92 8.4 111

1 0.5 -0.3 0 1 0 -0.8 0

2 0.3 -0.5 0 2 0.6 -0.2 0

33 0.2 -0.6 0 33 11 0.3 3|

5.5 9.5 8.7 n/a|low volume 55 0 -0.8 0

10 8.8 8.0 n/a|low volume 10 0 -0.8 0

ShallowB % DOvs. Dead sp. DO Deep B % DO vs. Dead sp. DO
depth (cm) atmo. correct. Il depth (cm) atmo. correct.

olw 55 47 62| olw 12.9 121 160

1 n/a n/a|no volume 1 0 -0.8 0

2 8.6 7.8 n/a(low volume 2 17 0.9 1"

33 15 0.7 9 33 0.5 -0.3 0

55 8.5 77 n/a(low volume 55 0.2 -0.6 0

10 9.2 8.4 n/ajlow volume 10 0.2 -0.6 0

Shallow C % DOvs. Dead sp. DO Deep C % DO vs. Dead sp. DO

depth (cm) atmo. correct. umoles/L depth (cm) atmo. correct. _umoles/L

olw 7.3 6.5 85 olw 6.8 6.0 7

1 8.1 73 96 1 0.1 -0.7 0

2 0.8 0.0 0 2 0.1 -0.7 0

3.3 10.6 9.8 n/a(low volume 3.3 1.5 0.7 9

5.5 5.8 5.0 66 55 0.1 -0.7 0

10 9.8 9.0 n/a|low volume 10 0.1 -0.7 0

Avg. Temp (°C) = 24.1 (3.0 degree range) Avg. Temp (°C) = 22.9 (1.1 degree range)

olw = overlying water

Dead space correction note: The syringes were filled with low-oxygen lab water prior to when the profilers were assembled. This water
was pushed out through the tubing and the frit. It is assumed that the water within the tubing could becomes oxygenated
in the time between prepping the profilers and deploying them. Thus, the assumption is that each syringe sample included
1 milliliter of oxygen-saturated water. This has been subtracted out of the final dissolved oxygen concentration for each
syringe. If dead space correction lead to a negative DO concentration, zero was used instead. The assumption that
the dead volume was entirely saturated may be incorrect in these cases. Regardless, the calculated DO flux is not
influenced due to the order(s) of magnitude higher values found in the overlying water.

Pond A14 - 9/10/2008
Deployment: 18:30 (9/10/08) - 13:00 (9/11/08) PT Deployment: 14:30 (9/10/08) - 09:00 (9/11/08) PT
Shallow #1 Inlet
Shallow A % DO vs. Dead sp. DO Deep A % DO vs. Dead sp. DO
depth (cm) atmo.  correct. umoles/L| depth (cm) atmo. correct. umoles/L
olw 14.5 13.7 181 olw 20.9 20.1 265
1 1.2 10.4 137 1 9.4 8.6 113
2 13.9 131 173 2 9.5 8.7 115
33 14.5 13.7 181 3.3 1.8 1.0 13|
55 15.9 15.1 199 55 22 1.4 18]
10 nla n/a n/a|no volume 10 1.5 0.7 9
Shallow B % DOvs. Dead sp. DO Deep B % DO vs. Dead sp. DO
depth (cm) atmo. correct. Il depth (cm) atmo. correct.
olw 29 21 27| olw 15.6 14.8 195
1 24 1.6 21 1 16.7 15.9 210
2 22 1.4 18 2 72 6.4 84/
33 26 1.8 23] 33 73 6.5 85
55 4 32 42| 55 1.9 1.1 14
10 26 1.8 23] 10 1.8 1.0 13
Shallow C % DOvs. Dead sp. DO Deep C % DO vs. Dead sp. DO
depth (cm) atmo. correct. depth (cm) atmo. correct.
olw 3.3 2.5 33 olw 15.3 14.5 191
1 24 1.6 21 1 20.3 19.5 257
2 39 3.1 40! 2 12 11.2 148
3.3 29 21 27| 33 28 2.0 26
55 22 1.4 18 55 8.5 77 101 <- throw out (reset prior to deploy
10 3.1 23 30 10 1" 10.2 134 so potentially air in line)
Avg. Temp (°C) = 21.7 (2.8 degree range) Avg. Temp (°C) = 22.3 (3.0 degree range)
Pond A3W - 9/30/2008
Deployment: 13:15 (9/30/08) - 09:00 (10/1/08) PT Deployment: 13:15 (9/30/08) - 09:00 (10/1/08) PT
Shallow #2 Inlet
Shallow A Dead sp. DO Deep A Dead sp. DO
depth (cm)J vs. atmo. correct. _umoles/L depth (cm)D vs. atmo. correct. _umoles/L
olw 10.9 10.1 133 olw 8.3 7.5 G
1 0.3 -0.5 0 1 0.2 -0.6 0
2 0.3 -0.5 0 2 0.3 -0.5 0
3.3 0.3 -0.5 0 3.3 0.4 -0.4 0
5.5 nla n/a n/a|no volume 55 0.2 -0.6 0
10 0.5 -0.3 0 10 1 0.2 2
Shallow B Dead sp. DO Deep B Dead sp. DO
depth (cm) correct. _umoles/L depth (cm) correct. _umoles/L
olw 9.8 9.0 119 olw 14 13.2 174
1 0.1 -0.7 0 1 0.2 -0.6 0
2 0.2 -0.6 0 2 0.2 -0.6 0
33 0.5 -0.3 0 33 0.2 -0.6 0
55 0.5 -0.3 0 55 0.2 -0.6 0
10 0.7 -0.1 0 10 0.3 -0.5 0
Shallow C Dead sp. DO Deep C Dead sp. DO
depth (cm) correct. Il depth (cm) correct.
olw 9.4 8.6 113 olw 92 8.4 111
1 0.2 -0.6 0 1 0.6 -0.2 0
2 0.1 -0.7 0 2 0.1 -0.7 0
33 1.6 0.8 10 33 0.3 -0.5 0
55 n/a n/a n/a|no volume 55 0.5 -0.3 0
10 1.4 0.6 10 0.2 -0.6 0|

Avg. Temp (°C) =

22.1 (4.5 degree range)

Avg. Temp (°C) = 21.7 (4.8 degree range)
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