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Waterbirds

* Waterbirds rely on the shallow water ponds and
broad mudflats of the South Bay to provide critical
invertebrate and biofilm food resources that fuel
m igration (Rowan 2012, Hall et al 2021)




Experimental ponds to enhance prey production and

foraging accessibility
Ponds E12/13 at Eden Landing Ecological Reserve, Hayward, CA

Intake |
Reservoir

Intake y
. Reservoir




Research Questions

* How do water and sediment conditions
influence macroinvertebrate biomass and
community composition?

* How do water conditions, habitat features,
and prey resources influence shorebird
abundance?

* Which macroinvertebrate taxa are
consumed by shorebirds in ponds with
different salinities?




Methods

Habitat Characteristics
Elevation
Water Quality

Benthic Invertebrates

Monthly core samples

Sampled 6 elevation zones/mound
24 mounds

Waterbird Counts

Monthly pond counts

e Birds assigned to 125 x 125 m grids
Weekly foraging mound counts

* Birds assigned to elevation zones

Shorebird Diets
Collected actively foraging small shorebirds and
associated macroinvertebrate cores in all cells

2 USGS




Results: Benthic macrofauna
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Macroinvertebrate community succession and biomass
differed among salinity treatments

Cell 1: Low (< 40 ppt) Cell 2: Low (< 40 ppt)
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Greater taxonomic diversity was observed at
low salinity and pH

Oligochaeta

Amphipoda
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Small shorebirds consumed nematodes in
all salinity treatments

Low (< 40 ppt; n=1) Mod. (40-80 ppt; n =9)
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Small shorebirds consumed dipterans in
moderate and high salinity treatments

Low (< 40 ppt; n=1) Mod. (40-80 ppt; n =9)
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Shorebird diets differed from prey availability

Low (< 40 ppt; n=1) Mod. (40-80 ppt; n =9)
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Summary and Conclusions

rtebrate dive

Macroin

: and biomass increased over time and were greatest in,
cells

......
e

Water depth, salinity, dissolved oxygen were important predictors of macroinvertebr
abundance that can be managed to optimize prey resources for shorebirds

Predation may play a role in limiting macroinvertebrate abundance and biomass at shallower
depths (<10cm

Foraging shorebird abundance increased with invertebrate biomass and was maximized on
mounds that were 50% exposed and farther than 75 m from levees

Nematodes and dipterans were among the most abundant and most frequently consumed prey
items in all cells. These taxa were also important for shorebirds in North Bay ponds (Takekawa et
al., 2009), and efforts to maintain them could benefit shorebirds

Proportions offprey consumed by small shorebirds differed from availability in sedime
suggesting preference, particularly in low and medium salinity cells



Quantifying Drivers and Stressors of Intertidal
Biofilm Resources at the Largest Tidal Wetland
Restoration on the U.S. West Coast

Video: T. Kuwae




How will restorations
affect mudflat extent

and resources such as
biofilm ? -




Research Questions

* How do relationships among biofilm
biomass, community composition,
nutritional quality and mercury
concentration vary seasonally and spatially?

* What role do mudflat physical and biological
features (including proximity to restoration,
sediment properties, elevation/inundation,
temperature, salinity, macroinvertebrates,
and others) play in driving these changes?

e Can we build remote sensing models to map
biofilm abundance, diversity, and nutritional
quality across the Bay?

a2 USGS



Multi-scalar
| approach

“Quadrat” scale (1 x 1 m)

* jn situ field measurements and
field spectroscopy

“Plot” scale (800 x 800 m)

» field areas adjacent to existing
and planned tidal marsh
restoration sites

“Regional” scale encompassing the
mudflats of the South Bay

* relationships identified at the
guadrat and plot scales used to
develop remote sensing algorithms
for multispectral satellite imagery

Ecological processes on intertidal mudflats act at very small (mm to cm) to
large (tens of km) spatial scales to influence biofilm distribution, quantity
and quality therefore, it is important to develop appropriate methods that
capture and integrate the range of these processes



iofilm biomass higher in
ached pond compared
to bay mudflat

Winter Spring

B

Chlorophyll a (ng g”)

Summer
ﬁ = 1

Eden Landing Hetch Hetchy Hayward Eden Landing Hetch Hetchy Hayward




Total invertebrate density was higher at bay
mudflat compared to breached pond site

Benthic macrofauna

Oligochaeta Bivalvia Polychaeta Ostracoda Other

Winter Spring
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‘Mercury concentrations increased with

oo
S~
«T+]
f o
S
bo
-
@
S

—

. i - =,

~—

.
— - - . 5 ~

_ N3 PUFA |
-y=.0.1546x + 1.1583
3 R2=0.5734

- g- —

N6 PUFA
y = 0.0607x - 0.0572
. R2=0.6921
\

Polyunsaturated Fatty Acids (ug/g)

jwe

e

~

fatty acids



Mapping biofilm abundance,
diversity, and nutritional quality

In progress:

Hyperspectral remote
sensing algorithm for
biodiversity of biofilm for
South San Francisco Bay
mudflats

Spatial variability analysis
for mudflat biofilm -
Sentinel - UAS — Ground
sampling

A

%USGS camera (4 cm)



Next Steps

e Currently analyzing data to understand effects of various physical drivers
across sites and seasons

 Mercury seasonal relationships with fatty acids, primary consumers and
implications for shorebirds

* Remote sensing to map spatial distribution and nutritional quality so
managers can visualize biofilm resources on the landscape

* Evaluate restoration and management regimes on biofilm production,
carbon storage and co-benefits for avian and fish food webs

* Collaborate with efforts to measure carbon flux at Eden Landing....”?
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