The link between nutrient dynamics and water quality in the Lower South Bay

Ariella Chelsky, Derek Roberts, Kristin Art, Lilia Mourier, David Senn

Nutrients in SF Bay

Cloern et al. 2020, Estuaries and Coasts

Bay-wide Loads	65% Wastewater
N: 50,000 kg d ⁻¹	20% Agriculture
P: 5,000kg d ⁻¹	15% Stormwater

Nutrient Dynamics in LSB

Crauder et al. 2016, SFEI

Lower South Bay Margin Habitats

Low DO in Margin Habitats

Low DO in Margin Habitats

Low DO in Margin Habitats

What is driving low DO in the sloughs?

Nutrients? Salt ponds? Both?

Metabolism estimates in sloughs

Metabolism estimates in sloughs

- Rate estimates are based on one sensor station
- Change in DO from flood to ebb
- Five years of data (2015-2019)
 - ~1000 tidal cycles per site
- Calculate tidal-cycle average net ecosystem production (*NEP*) rate -> GPP minus R
- Nighttime NEP values represent respiration (R)

Seasonality in dissolved oxygen

- Dissolved oxygen (DO) levels generally peak in winter and early spring at both sites
- DO minima occurred in spring or summer
- Chlorophyll-a peaks at Alviso Slough coincide with DO maxima
- Newark Slough chlorophyll-a levels were only rarely elevated

Seasonality in respiration and NEP

- Remarkably different seasonal patterns between sites
- Newark Slough showed strongly seasonal metabolic rates, with highest net heterotrophy in summer
- Alviso Slough dynamics are more complicated...

Seasonality in respiration and NEP

- High respiration rates in the winter and spring, with very negative NEP
- Respiration rapidly decreased into summer, NEP still consistently negative
- Peak in respiration not consistent with periods of lowest DO
- May be explained by the complex pond-slough exchange dynamics during bloom events

Link to salt pond production

- Lagged and muted DO and chlorophyll-a signals at Alviso relative to Pond A8 with ebb-centered timing of peaks
- Suggest elevated chlorophyll-a concentrations in Alviso Slough driven by biomass export from Pond A8

Link to salt pond production

- Lagged and muted DO and chlorophyll-a signals at Alviso relative to Pond A8 with ebb-centered timing of peaks
- Suggest elevated chlorophyll-a concentrations in Alviso Slough driven by biomass export from Pond A8
- High frequency data indicatepeak respiration rates/heterotrophy in Alviso associated with spring bloom period when large biomass outflow from highly productive pond
- Highly elevated rates of oxygen demand offset by super-saturated DO concentrations in RSP effluent during the bloom periods
- DO minima in summer, when RSP effluent lower in DO, and in-slough respiration rates were at an annual minimum but were still high

Takeaways

- Respiration rates in Alviso Slough are very high, comparable to tropical, warm-water estuaries
- Creates high potential for low DO conditions
- Seasonal R and chl-a patterns match, and are totally different from what we observe at a not-pond-connected site
- Metabolic signal strongly tied to pond dynamics
- Peak R associated with input of pond organics to slough, offset by elevated DO from ponds during winter/spring bloom
- Minimum DO in summer when baseline R remains high and rates are no longer offset by oxygen-saturated pond effluent
- Consistently negative NEP associated with slough sediments

Key uncertainties and future work

- The extent to which WWTP nutrient loads contribute to production in ponds
- Degree of nutrient limitation in ponds
- Impact of increased POTW nutrient loads on pond biomass production
- Effect of pond restoration process on water quality in sloughs
- Continue synthesis and modeling of existing data from LSB sloughs/ponds
- Field data collection in ponds at different stages of restoration

Identifying protective DO levels

Assessment Framework Goals

Establish ecologically relevant thresholds for protective DO conditions in LSB margin habitats.

Assess protective dissolved oxygen thresholds under future conditions.

Thanks to our collaborators

Lissa MacVean Rusty Holleman Nicholas Nidzieko Levi Lewis Perry de Valpine Martha Sutula Evan Howard Jeremy Diamond Alexis Walls Sujoy Roy USGS MarFac USGS WSC