

Motivation

- Subsidence in South Bay (mainly Alviso ponds)
 - -32 million m³ sediment needed to fill subsided ponds to MTL
- Direction of sediment flux unknown for far south SFB
 - -Jaffe et al. suggest it is generally to the south in this reach
- SFB sediment conventional wisdom
 - –Winter input (wet season)
 - Two local tributaries (important on decadal-scale)
 - Sacramento & San Joaquin Rivers (importance unknown)
 - –Summer redistribution (windy)
 - Extensive mudflats

Study Design

- •Flux: Dumbarton Bridge (15-min. interval)
 - ADCP for index velocity, stage, and backscatter
 - Two turbidity probes: 4' and 25' above bottom
 - Barometer

- •Flux: Boat-based discharge and EDI sediment sampling for calibration (monthly/quarterly)
- •Input: Sediment measured on 2 major tributaries (daily)
- Processes: Adjacent mudflat (15-min. interval)
 - High-accuracy pressure transducer for waves
 - CTD + turbidity

Equal Discharge Increment (EDI) Sampling

- •Flow centroids determined for channel cross-section
- Depth-integrated sediment samples collected from middle of each centroid

Study Area

Results - Calibration

- •Discharge (bridge vs. boat): $y = 0.983 \text{ X} 26.7 \text{ r}^2 = 0.984$
- Suspended-sediment concentration (SSC, from EDI):

Results – Continuous Discharge

Positive is ebb tide direction

Results – Continuous SSC

Results – Cumulative Sediment Flux

Negative is flood direction (into far south SFB)

Results – Cumulative Sediment Flux

Negative is flood direction (into far south SFB)

Results – Spring Flux (2009)

- Positive salinity gradient
- Density flow to the South
- SSC flux to the South

Results – Spring Flux (2010)

- Negative salinity gradient
- Density flow to the North
- SSC flux to the North

Results – Time for Restoration

- Preliminary suspended-sediment flux
 - -Tributary input: 20,000 m³/yr
 - -Past Dumbarton: -200,000 m³/yr for WY09
 - -80,000 m³/yr for WY10
- Approximate time to fill subsided volume (32 Mm³)
 - -Tributaries input: ~1,600 yrs
 - -Past Dumbarton: ~200 yrs

Future Work

- •Further explore effect of physical processes on suspended sediment flux using existing data (e.g., wind and waves)
- Study the relationship between the spring bloom and increased SSC
- Maintain flux station to quantify and understand yearly differences in flux

Acknowledgements

- Paul Buchanan, Amber Forest, Tara Morgan-King,
 Dan Whealdon-Haught, and Rob Wilson
- Funding:
 - The San Francisco Bay Pilot Study for the National Water Quality Monitoring Network for U.S. Coastal Waters and their Tributaries
 - USGS Science Support for Salt Pond Restoration

