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Diversity of Life

* 98% of Animals are #;
invertebrates




Yy Invertebrates? —

e Have specific physical tolerances (i.e. salinity) and
foraging guilds
e Indicator species for water quality
e Indicator of habitat or habitat change
e Can cause bio-turbation of mudflat
e Important prey resource for
e Fish species
e Shorebirds and diving benthivores

San Francisco Bay is a site of Hemispheric
Importance for Shorebirds

Important in wintering/staging areas for birds to
“tuel up” before migration




Ecology of Shoals — Conceptual Model
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Ecology of Shoals — Conceptual Model
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Landscape-scale experiment demonstrates that Wadden Sea
intertidal flats are used to capacity-by-molltuscivore migrant

shorebirds (Kraan etal. 2009. J. Animal Ecology)

Effects of declining food on mud flats (cockle harvest) was tested for Red

Knots based on yearly benthic mapping, colour-ringing, and bird-counts,
1996-2005. Suitable foraging area, spatial predictability of food, and

survival were estimated.
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Red Knots lost
55% of their
foraging area,
decreased 42%
in numbers,

..... Survival
declined

82-89%
accounting for
half of the
decline; others
emigrated.



Evidence from foraging
—behavior(Kuwae2010;
Slow-motion video replay)

1. Sediment fluid held in between bills

2. Fluid moving back and forth by
wiggling bills, as if seiving

3. Tongue structure with spines

Successful capture rate of visible small
macrofauna is only 14 * 11% (*SD)

Tongue structure
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Shallow water processes govern system-wide phytoplankton
bloom-dynamics. (Thompson-etal. 2008:=J=Marine Systems;
ucas etal. 2009, J. Marine Systems)

Grazing by bivalves determined
phytoplankton blooms, and above a
grazing threshold blooms ceased.

Bivalves, preyed upon by birds and
fish in the fall and winter, disappear
each year prior to the spring bloom.

Growth of phytoplankton depends on
Shallow water processes -- change in
benthic filter-feeders or their predators
has great potential to change the
bloom dynamics.

18 August 1994 7 September 1994 13 September 1994

4 X 12
Chlorophyll a (ug/l.)
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outh Bay Salt Pon

e Largest tidal wetland
restoration on west coast

e 16,500 acres of
commercial salt ponds
in South San Francisco
Bay, 1,400 acres along
Napa River in North
Bay.

e South Bay Salt Pond
Restoration Project will
convert salt ponds into
mosaic of tidal wetlands
within an adaptive
management framework
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= A key uncertainty is how )
the restoration will affect | &
the estuarine shoals that %
support the region’s g
migratory birds and fishes. ==
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Ideal site to study
hydrology, geomorphology, § f?-
invertebrate-shorebird b
foodwebs




mbarton Shoals

.)
/

* 3 transects along
elevation gradient

® 9 sampling
locations

* 3 replicates for a
total of 81 cores.

e Subsample 1 core/
location

® Monthly sampling
¢ Biofilm, Oct 2010




Viethods

e Sieve through 0.5 mm
screen

* Stained with Rose
Bengal dye, preserved
in 70% ethanol

e Sorted to lowest
possible taxon

e Bivalves sorted by size
class

® Biomass
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USGS WERC Biofilm studies . .-

o

*Monthly observations, % cover bt

» Monthly samples for quantification analysis

* high speed camera studie

~ *Working with NASA interns
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or foraging observatiol
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Dumbarton Shoals collecting
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Results

e Invertebrate Density:

e temporal and spatial variation

® Biomass
e Ash Free Dry Weight maps, depletion?

® Available Foraging Times for invertebrate predation

e Patterns in Bivalve Size Class

e Vary by elevation position and time




Results

e Invertebrate Density:

e temporal and spatial variation




Taxa densities varied-over tim e
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Results

e Invertebrate Density:

e temporal and spatial variation

® Biomass
e Ash Free Dry Weight maps, depletion?
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Results

e Invertebrate Density:
e temporal and spatial variation

e Biomass
e Ash Free Dry Weight maps, depletion?

® Available Foraging Times for invertebrate predation




abitat availability for-foraging—

Topography/
bathymetry
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Water Levels
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Data from: D. Schoelhamer,
G. Shellenbarger

Foraging depths




Foraging depths in water and sediment
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Accessible habitat for pred%

% time mudflat is accessible
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Relation between changes in
elevation and inundation period
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Results

e [nvertebrate Density:
e temporal and spatial variation

e Biomass
e Ash Free Dry Weight maps, depletion?

e Available Foraging Times for invertebrate predation

e Patterns in Bivalve Size Class

e Vary by elevation position and time




Bivalve biot is primarily—""

in shallow shoals
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Bivalves 0-6 mm:
patterns vary by position and month
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Bivalves 6-18 mm

patterns vary by position and month
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Small shorebird food:
bivalves 0-6 mm
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Bivalves 0-6 mm
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Small shorebird food: bivalves 0-6 mm ' Growtn &
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Small shorebird food: bivalves 0-6 mm ' Growtn &
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Small shorebird food: bivalves 0-6 mm
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Benthic invertebrates show distinct monthly and elevation patterns.

m Patterns are complex and vary by size class, elevation, and
season and may reflect a combination of bottom-up and top-down
controls

Are invertebrate prey resources limiting? This may exert a bottom-up
control on foraging birds (as in Kraan et al. 2009)

m What is the carrying capacity of this site? See A. Rowan Poster

m Dbiofilm may contribute to shorebird diet: see J. Takekawa et al.
Biofilm Poster

Shorebirds may exhibit top-down control on mud flat invertebrate
communities, especially bivalves
m Bivalves exert control on phytoplankton (Cloern 1982, Thompson

et al. 2009, Lucas et al 2009); such that “...change in benthic
filter-feeders or their predators has great potential to change the
bloom dynamics.”

Predation depends on site accessibility which is determined by

elevation and tides and size class
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- With increased Water Levels,~
available foraging habitat decreases

Given static mudflat elevations

% time mudflat is accessible with
% time mudflat is accessible 150cm increase in WL
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~ —Restoration Uncertainties

= A key uncertainty is how
the restoration will affect
the estuarine shoals that
support the region’s
migratory birds and fishes.

restoration processes and
outcomes?







Lessons Learned from NBay




North Unit,

Monthly collection at 10
North Unit sites, 2 Fagan
Slough, and 2 Napa River

10 cm x 10 cm cylindrical
cores

Sieved with o.5mm mesh

Sorted and identified to
taxonomic groups

Dec 2008 - Sep 2010




Fagan Slough

ons
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Breach in October 2008
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—Fagan Slough  ——Napa River North Unit
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Spatial Trends

® Amphipoda—#-Bivalvia M Brachyura ™ Cumacea ®Insecta ™ Isopoda ysidac i aeta WPolychaeta ™ Tanaidacea

NU1

o
S
>
=
7))
C
)
o
O
']
©
| .
0
O
T
()
>
£




Overall Colonization Tren:
at Napa Plant Sitess

Initial colonization after 6 months and robust detection
after 18 months

Restorations can provide relatively high invertebrate
abundance compared to adjacent sloughs

Initial colonizing taxa (found in low numbers in adjacent

control sites) can become very abundant, but over time a
more diverse and even community may emerge

Seasonal patterns influence system-wide abundance and
can help explain colonization patterns
Colonization may not occur in a linear pattern, and

different sites with a restoration area may support specific
invertebrate populations




